

The 6th IEEE International Conference on Industrial Cyber-Physical Systems

May 8-11, 2023 | Wuhan, China

Program

Host by IEEE Industrial Electronics Society Organized by China University of Geosciences

Co-Organizers

Hubei Key Laboratory of Advanced Control
and Intelligent Automation for Complex Systems
Engineering Research Center of Intelligent Technology for
Geo-Exploration, Ministry of Education
Advanced Control and Intelligent Automation for Complex Systems
Overseas Expertise Introduction Center for Discipline Innovation
Hubei Province Association for Automation
Hubei Province Association for Artificial Intelligence

Contents

Organizing Committee	1
Important Information	
Instruction for Oral and Poster Presentations	3
Transportation and Venue Location	4
Conference Center Floor Plan	7
Keynotes	8
Industry Forum	11
Tutorials	16
Program at a Glance	21
Timetable of Technical Program	22
Technical Program	23

Organizing Committee

Steering Committee Chairs

Xiaohong Guan (CN) Okyay Kaynak (TR/CN) Kamal Al-Haddad (CA) Huijun Gao (CN)

Min Wu (CN) Xinghuo Yu (AU) Thilo Sauter (AT)

General Chairs

Jinhua She (JP)

Weihua Cao (CN) Yang Shi (CA)

Armando W. Colombo (DE)

Technical Program Chairs

Xin Chen (CN) Jundong Wu (CN) Luis Gomes (PT) Peng Cheng (CN)

Publications Chairs

Chengda Lu (CN) Mihoko Niitsuma (JP) Bin Zhang (US)

Publicity Chairs

Luefeng Chen (CN) Chao Shen (CA) Daisuke Chugo (JP)

Wenkai Hu (CN)

Fei Gao (FR)

Hui Zhang (CN) Valeriy Vyatkin (FI)

Special Sessions Chairs

Xinkai Chen (JP) Paulo Leitao (PT) Wenbin Dai (CN)

Workshops Chairs

Chuanke Zhang (CN) Ya-Jun Pan (CA)

Hipólito Guzmán (ES)

Work-In-Progress Chairs

Kaifeng Dong (CN) Chengbin Ma (CN)

Larisa Dunai (ES)

Industry Forum Chairs

Allen Chen (US) Victor Huang (US) Michael Condry (US) Yebin Wang (US) Zhibo Pang (SE)

Finance Chairs

Jianqi An (CN) Aleksander Malinowski (US)

Local Arrangement Chairs

Xiongbo Wan (CN) Rusheng Li (CN)

Sheng Du (CN)

Young Professional Chairs

Marek Jasinski (PL) Mingxi Liu (US)

Xiaofeng Zong (CN)

Award Committee Chairs

Mo-Yuen Chow (US) Yong He (CN)

Conference Secretary

Zhengtao Liu (CN) Feng Wang (CN)

Important Information

• Time: May 8–11, 2023

• Venue: Wuhan East Lake International Conference Center (ELICC)

• Agenda: May 9–11, 2023, Academic lectures and discussion

• Official Languages: English

Registration

• Registration Time: May 8, 8:00–22:00

• Registration Desk: Wuhan East Lake International Conference Center

Contacting the Organizing Committee

• Contacting Person: Feng Wang

Zhentao Liu

• E-mail: ICPS2023@cug.edu.cn

Website of ICPS2023: http://icps2023.cug.edu.cn/

Website of IEEE IES Conferences Community: https://confcomm.ieee-ies.org/home/welcome

Instruction for Oral and Poster Presentations

Oral Presentation

- Oral Presentation Time: 20 minutes (15 minutes oral presentation + 5 minutes discussion);
- Each speaker is required to meet his/her session chairs in the corresponding session rooms 10 minutes before the session starts and copy the slides to the computer;
- Each session room is equipped with a projector and a PC (with Microsoft Windows and Microsoft Power-Point). Please make sure that your files are compatible and readable with our operation system by using commonly used fonts and symbols.

Poster Presentation

- ALL Extended Abstracts accepted by the conference will be presented in form of posters.
- The conference will provide the proposed design template of LaTeX and Word (choose by yourself) as well as the poster design prospectus. Please make and post your paper according to the prospectus. The conference will provide an exhibition board (width 1m, height 2.5m) for each poster paper. The poster print size is 1.2m(H)×0.9m(W) (Please make by yourself). The boards will be arranged in order of the paper in the final program. Tape and other materials will be provided on site, and volunteer-assistants will give necessary help. Posters are required to be condensed and attractive. The characters should be large enough so that they are visible from 1 meter apart.
- During your poster session, the author should stay by your poster paper to explain and discuss your paper with visiting colleagues. The authors, who do not poster their papers at their poster sessions and/or do not stay by their papers, will be considered as "No Show".

Transportation and Venue Location

Transportations

1. Wuhan Tianhe International Airport → Wuhan East Lake International Conference Center

Route 1: Subway (★Recommended)

Route:

Take Subway Line 2 (Toward Fozuling) \rightarrow Get on the subway at Wuhan Tianhe International Airport Station \rightarrow Get off the subway at Hongtu Boulevard \rightarrow Transfer to Subway Line 8 (Toward Junyun Village) \rightarrow Get off the subway at Hubei Provincial Museum & Hubei Daily (Exit A) \rightarrow Walk 1.1 kilometers or take a taxi to Wuhan East Lake International Conference Center.

Fare: 8 RMB

Route 2: Subway & Bus

Route:

Take Subway Line 2 (Toward Fozuling) → Get on the subway at Wuhan Tianhe International Airport Station → Get off at Hongshan Square (Exit B5) → Walk to Hongshan Road Hongshan Square Bus Stop → Take the 701 bus (Toward Huanhu Road Donghu) → Get off the bus at Huanhu Road Donghu → Walk 307 meters to Wuhan East Lake International Conference Center.

Fare: 9 RMB

Route3: Airport Bus Line 2 & Bus

Route:

From Wuhan Tianhe International Airport, walk 439 meters to Wuhan Tianhe International Airport Bus Stop \rightarrow Take Airport Bus Line 2 \rightarrow Get off the bus at Wuhuo Road Yuemachang \rightarrow Transfer to the 701 bus at the same stop \rightarrow Get off the bus at Huanhu Road Donghu \rightarrow Walk 307 meters to Wuhan East Lake International Conference Center.

Fare: 9 RMB
Route4: Taxi

Route: Drive along the Airport Expressway, the Second Ring Road, Wuhan Avenue and Donghu Road, the journey is about 40 kilometers and takes about 50 minutes.

Fare: About 120 RMB

2. Wuhan Railway Station → Wuhan East Lake International Conference Center

Route 1: Subway (★Recommended)

Take Subway Line 4 (Toward Bailin), Get on the Subway at Wuhan Railway Station Subway Station \rightarrow Get off the subway at Yuejiazui \rightarrow Transfer to Subway Line 8 (Toward Junyun Village) at the same station \rightarrow Get off the subway at Hubei Provincial Museum & Hubei Daily (Exit A) \rightarrow Walk 1.1 kilometers or take a taxi to Wuhan East Lake International Conference Center.

Fare: 4 RMB

Route 2: Subway & Bus

Take Subway Line 4 (Toward Bailin), Get on the Subway at Wuhan Railway Station Subway Station → Get off the subway at Dongting (Exit A) → Walk to Huangli Road Shengbao Xiaoqu Bus Stop → Take the 678 bus (Toward Zhongshan Road Fenghuangshan) → Get off the bus at Donghu Road Provincial Museum → Walk 924 meters or take a taxi to Wuhan East Lake International Conference Center.

Fare: 4 RMB

Route 3: Bus

Bus stop location:

Near the east exit of Wuhan Railway Station.

Route

Walk to Wuhan Railway Station Bus Stop \rightarrow Take the 504 bus (Toward East Square of Wuchang Railway Station) \rightarrow Get off the bus at Xudong Street Railway Wangjiadun Stop \rightarrow Transfer the 402 (or 709) bus at the same stop \rightarrow Get off the bus at Donghu Road Provincial Museum \rightarrow Walk 924 meters or take a taxi to Wuhan

East Lake International Conference Center.

Fare: 4 RMB
Route 4: Taxi

Route: Drive along Happy Avenue, Second Ring Road, Donghu Road, the journey is about 13 kilometers, and it

takes about 25 minutes. **Fare:** About 30 RMB

3. Hankou Railway Station → Wuhan East Lake International Conference Center

Route 1: Subway (★Recommended)

Route:

Take Subway Line 2 (Toward Fozuling), Get on the Subway at Hankou Railway Station Subway Station \rightarrow Get off the subway at Fanhu \rightarrow Transfer to Subway Line 3 (Toward Hongtu Boulevard) at the same station \rightarrow Get off the subway at Zhaojiatiao \rightarrow Transfer to Subway Line 8 (Toward Junyun Village) at the same station \rightarrow Get off the subway at Hubei Provincial Museum & Hubei Daily (Exit A) \rightarrow Walk 1.1 kilometers or take a taxi to Wuhan East Lake International Conference Center.

Fare: 5 RMB

Route 2: Subway & Bus

Route:

Take Subway Line 2 (Toward Fozuling), Get on the Subway at Hankou Railway Station Subway Station → Get off the subway at Hongshan Square (Exit B5) → Walk to Hongshan Road Hongshan Square Bus Stop → Take the 701 bus (Toward Huanhu Road Donghu) → Get off the bus at Huanhu Road Donghu → Walk 307 meters to Wuhan East Lake International Conference Center.

Fare: 6 RMB

Route 3: Bus

Bus stop location:

Near the Exit A of Hankou Railway Station Subway Station.

Route:

Walk to Hankou Railway Station Bus Stop → Take the 411 bus (Toward Hongmiao Bus Station) → Get off the bus at Donghu Road Provincial Museum → Walk 924 meters or take a taxi to Wuhan East Lake International Conference Center.

Fare: 1 RMB
Route 4: Taxi

Route: Drive along the Second Ring Road, Huangpu Street, Wuhan Yangtze River Second Bridge, Wuhan

Avenue and Xudong Street, the journey is about 16 kilometers and takes about 30 minutes.

Fare: About 50 RMB

4. Wuchang Railway Station → Wuhan East Lake International Conference Center

Route 1: Subway (★Recommended)

Route:

Take Subway Line 4 (Toward Wuhan Railway Station), Get on the Subway at Wuchang Railway Station Subway Station \rightarrow Get off the subway at Yuejiazui \rightarrow Transfer to Subway Line 8 (Toward Junyun Village) at the same station \rightarrow Get off the subway at Hubei Provincial Museum & Hubei Daily (Exit A) \rightarrow Walk 1.1 kilometers or take a taxi to Wuhan East Lake International Conference Center.

Fare: 4 RMB

Route 2: Subway & Bus

Route:

Take Subway Line 4 (Toward Wuhan Railway Station), Get on the Subway at Wuchang Railway Station Subway Station → Get off the subway at Hongshan Square (Exit B5) → Walk to Hongshan Road Hongshan Square Bus Stop → Take the 701 bus (Toward Huanhu Road Donghu) → Get off the bus at Huanhu Road Donghu → Walk 307 meters to Wuhan East Lake International Conference Center.

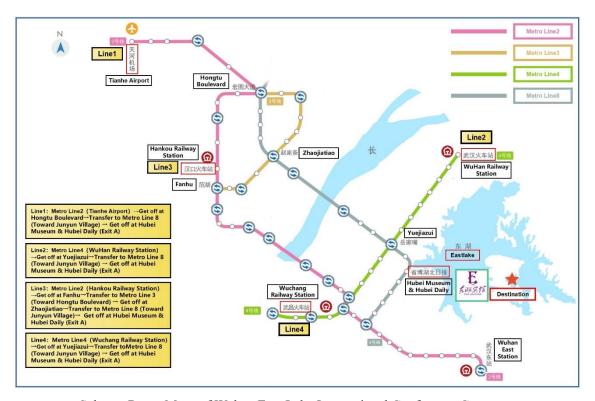
Fare: 3 RMB

Route 3: Bus

Bus stop location:

Near the south side of Wuchang Railway Station West Square

Route:

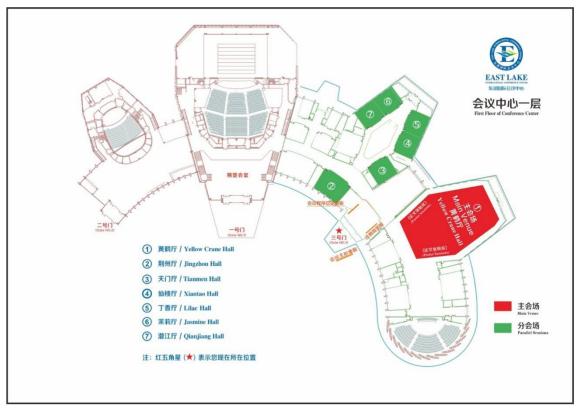

Walk to Zhongshan Road Wuchang Railway Station Bus Stop → Take the 564 bus (Toward Shibeiling West Road Xiongchu Avenue direction) or the 636 bus (Toward Zhongnan Road, Zhongnan 2nd Road) → Transfer to the 701 bus at the same stop → Get off the bus at Huanhu Road Donghu → Walk 307 meters to Wuhan East Lake International Conference Center.

Fare: 3 RMB

Route 4: Taxi

Route: Drive along Wuluo Road, Zhongnan Road, Zhongbei Road and Huangli Road, the journey is about 10 kilometers and takes about 30 minutes.

Fare: About 30 RMB



Subway Route Maps of Wuhan East Lake International Conference Center

Conference Center Floor Plan

Wuhan East Lake International Conference Center / East Lake Hotel

Floor Plan of the First floor of Conference Center

ICPS2023 Keynotes

Keynotes

Keynote 1

May 9, 09:10-10:10 Yellow Crane Hall

Xiaohong Guan

Xi'an Jiaotong University

Cyber-Physical Energy Systems for the Energy Revolution

Chair: Xin Chen (China University of Geosciences)

Abstract: Networking, intelligence and integration of cyber and physical systems are the trend of information science and technology development. Cyber-physical systems are the foundation of the energy revolution and technology revolution with tremendous challenges on cyber-physical modeling, intelligence design, system optimization and control. Cyber-physical energy systems with hydrogen storage offers a possible solution for energy supply and consumption without carbon emission and pollution, and would lead to the energy revolution towards resolving the global warming issue. It is shown that with the nontraditional energy storage technology the hydrogen enabled zero-carbon intelligent energy system provides an ideal infrastructure for energy supply and consumption without carbon emission and pollution, and would lead to the energy revolution towards resolving the global warming issue.

Xiaohong Guan received his B.S. and M.S. degrees in Control Engineering from Tsinghua University, Beijing, China, in 1982 and 1985, respectively, and his Ph.D. degree in Electrical and Systems Engineering from the University of Connecticut in 1993. He was a senior consulting engineer with Pacific Gas and Electric from 1993 to 1995. He visited the Division of Engineering and Applied Science, Harvard University 1999-2000. Since 1995 he has been with the Systems Engineering Institute at Xi'an Jiaotong University, Xi'an, China, and was appointed as the Cheung Kong Professor of Systems Engineering in 1999, and Dean of Faculty of Electronic and Information Engineering since 2008. From 2001 he has also been with the Center for Intelligent and Networked Systems, Tsinghua University, Beijing, China, and severed the Head of Department of Automation, Tsinghua University, 2003-2008.

Professor Guan is a member of Chinese Academy of Science and IEEE Fellow. His research interests include economics and security of networked systems, optimization based planning and scheduling of electrical power and energy systems, manufacturing systems, etc., and cyber-physical systems, etc.

ICPS2023 Keynotes

Keynote 2

May 10, 09:00-10:00 Yellow Crane Hall

Peng Shi

University of Adelaide, Australia

Cyber-Physical Systems: Analysis and Design

Chair: Jundong Wu (China University of Geosciences)

Abstract: Cyber-physical systems (CPS), such as smart grids and intelligent transportation systems, are complex systems where software and hardware components are seamlessly integrated toward performing well-defined tasks. However, this integration increases the vulnerability of CPS with higher possibility of cyber-attack that could cause severe consequences to economics, society, and human beings. Hence, cyber-security is critical and important in CPS. In this talk, the security of CPS is discussed from the perspectives of attackers. We will introduce the background of CPS and security issues, and some existing work on cyber-attacks. We then present our recent work on the design of stealthy hybrid attacks to CPS, which enables attackers to launch hybrid cyber-attacks more effectively to maximize system performance degradation with less chance to be detected.

Peng Shi received the PhD degree in Electrical Engineering from the University of Newcastle, Australia, the PhD degree in Mathematics from the University of South Australia, the Doctor of Science degree from the University of Glamorgan, UK, and the Doctor of Engineering degree from the University of Adelaide, Australia. He is now a Professor at the School of Electrical and Electronic Engineering, and the Director of Advanced Unmanned Systems Laboratory, at the University of Adelaide, Australia. His research interests include systems and control theory and applications to autonomous and robotic systems, cyber-physical systems, and multi-agent systems. He received the MA Sargent Medal Award from Engineers Australia in 2022 to recognize his longstanding eminence in science and practice of electrical engineering, the Life-time achiever Leader-Board acknowledgement from THE AUSTRALIAN from 2019-2022, and the Highly Cited Researcher recognition from Thomson Reuters from 2014-2022. Currently he serves as the Editor-in-Chief of IEEE Transactions on Cybernetics, a Senior Editor of IEEE Access, and an editorial member for a number of journals, including Automatica and IEEE Transactions on (Artificial Intelligence, and Circuits and Systems). His professional services also include as the President of the International Academy for Systems and Cybernetic Sciences, the Vice President of IEEE SMC Society, and IEEE SMC Distinguished Lecturer. He is a Fellow of IEEE, IET, IEAust and CAA, a Member of the Academy of Europe, and an Honorary Member of the Romanian Academy of Scientists.

ICPS2023 Keynotes

Keynote 3

May 11, 08:30-09:30 Yellow Crane Hall

Shinji Hara

Tokyo Institute of Technology

Glocal (Global/Local) Control for Hierarchical Cyber Physical Systems: Theoretical Foundation towards Practical Applications

Chair: Jinhua She (Tokyo University of Technology)

Abstract: There are a lot of world-wide crucial issues to be solved such as energy, environments, and transportations. Current and future directions of science and technology in almost all fields including control should be contributed for realizing desirable societies, say smart cities. This means that our target systems in control are large-scale cyber physical systems with hierarchical structure. One of the ideas to properly handle such systems is "Glocal (Global/Local) Control," which means that the global objective is achieved mainly by local actions of measurement and control cooperatively. This is a new control framework for realizing smart cities. The key for developing a fundamental theory is hierarchically networked dynamical systems with multiple resolutions in time and space, and one of the most important issues is how to compromise the global and local control objectives.

The main purpose of this talk is to show that new ideas, by exploiting the special structure of the target networked systems, with utilization of powerful existing theory in classical, modern, and robust control enable us to develop scalable methods for control analysis and design. The effectiveness of the proposed methods is verified through practical applications including glocal control for a type of electric vehicles with multiple controllable wheels. After explanations of the background, the idea, and the concept of glocal control, the first part is focused on the analysis, where stability and robust stability conditions are provided for hierarchically decentralized control systems. The second part is devoted to hierarchical optimal control based on the standard LQ optimal control, which gives a systematic way of compromising the global and local objectives. In the third part, a fairly general framework for compromising the global and local achievable performances based on a novel setting in the standard robust control. The effectiveness of all the proposed methods is verified through practical applications including glocal control for a type of electric vehicle with multiple motor driven wheels. Some remarks on the future research directions are addressed at the end of the talk.

Shinji Hara received the B.S., M.S., and Ph.D. in engineering from Tokyo Institute of Technology, Japan, in 1974, 1976, and 1981, respectively. In 1984, he joined Tokyo Institute of Technology as an Associate Professor and served as a Full Professor for ten years. From 2002 to 2017 he was a Full Professor in the Department of Information Physics and Computing at the University of Tokyo. He is Professor Emeritus of Tokyo Institute of Technology and the University of Tokyo. His current research interests are in robust control, decentralized cooperative control for large-scale networked dynamical systems, system biology, and glocal control.

Dr. Hara has received many awards in control including the George S. Axelby Outstanding Paper Award from the IEEE Control System Society in 2006. He was the President of SICE (Society of Instrument and Control Engineers, Japan) in 2009, a Vice President of the IEEE Control Systems Society in 2009 to 2010, and an IFAC Council member from 2011 to 2017. He is a Fellow of IFAC, IEEE, and SICE.

Industry Forum

IEEE ICPS 2023 will host an Industry Forum session during the conference. Industry Forum is an IES program for Industry to engage with research in a productive manner. Industry speakers are invited to discuss industry, technology directions, and, most importantly, challenges for the companies. These presentations inform the attendees on the vision and application of technologies in business and what challenges companies are encountering. The forum also offers the opportunity for researchers to study their challenges and know the contacts in the companies should they have a solution that the company might utilize. We want all conference attendees to engage in the Industry Forum and listen to the presentations of our industry speakers so all communities can benefit. For additional Industry Forums organized in IES events visit https://www.ieee-ies.org/industry-forum

Organizers:

Victor Huang Onlye Solutions IEEE Life Fellow

Allen C. Chen Innovatech Solutions IEEE Life Senior Member

Michael Condry ClinicAI IEEE Life Fellow

Yebin Wang Sr Principal Research Scientist Mitsubishi Electric Research Laboratories

Zhibo PangSr Principal Scientist
ABB/KTH

Industry Forum 1

May 9, 10:30-12:00 Yellow Crane Hall

Sensor Networks toward Autonomy and Sustainability

Chairs: Zhibo Pang, Allen Chen, and Victor Huang

Panelists:

- Panpan Hu (VanJee Wuhan Research Institute)
- Ying Shi (Zhejiang Supcon Technology Co., Ltd)
- Tao Ren (WISDRI Engineering & Research Incorporation Ltd.)

10:45 - 11:10 a.m.

Title: Research and Development of Lidar and Its Applications

Abstract: In recent years, with the continuous development of Lidar technology and products, its application value has been more emphasized in the fields of mobile robots, intelligent traffic perception, and automatic drives. This report summarizes and introduces the technical principle, development history, technical form, and product category of Lidar, and analyzes the specific requirements and current technical level of Lidar according to different application fields. In addition, in the form of cases, the report also focuses on the introduction of global awareness of intelligent transportation solutions based on Lidar.

Panpan Hu is a Senior Engineer, the Chief Engineer of Laser technology of Vanjee Technology, and the President of Vanjee Wuhan Research Institute. He received his Ph.D. degree in Optical Engineering from Huazhong University of Science and Technology, Wuhan, China. He is also an expert in the Science and Technology Expert Database of Ministry of Communications, a member of the second Session of the Electronic Optical System Sub-Technical Committee of the National Optical and Photonics Standardization Technical Committee (TC103SC6), a member of the National Optical Radiation Safety and Laser Equipment Standardization Committee (TC284), an expert in the "Zhongguancun Standard" think tank, an expert in the expert database of Hubei Science and Technology Department, and an artificial intelligence expert of Wuhan Economy and Information Technology Bureau. He was elected into the ninth batch of Wuhan City "3551" Optical Valley Talent Program. His work was selected for the 2019 Major Scientific and Technological Innovation Database of Transportation of Ministry of Communications. In 2020, he won the sixth Beijing Invention Patent Award. He is currently involved in the preparation of one international standard and one national standard. In the past five years, he has authorized more than 50 invention patents and published 4 papers.

11:10 - 11:35 a.m.

Title: Practice Study on Industrial Internet in Process Industry

Abstract: Industrial Internet is aimed at the digitalization, networking, and intelligence needs of the manufacturing industry, building a data platform based on massive data collection, aggregation, and analysis. At the same time, Industrial Internet supports the ubiquitous connection of manufacturing resources, elastic supply, and efficient configuration in enterprise operations. This report focuses on the practical application of Industrial Internet platforms combined with continuous production and high-security integration in process industries, achieving the ultimate goal of improving safety, quality, efficiency, and environmental protection in process intelligent factories.

Ying Shi is the President Assistant of Zhejiang Supcon Technology Co., Ltd. and the President of the New Business Incubation Department. As a technical leader, he has received the second prize of Zhejiang Provincial Science and Technology Progress Award, the second prize of Hangzhou Science and Technology Progress Award, and has been selected as a "131" young talent in Hangzhou. He has been granted 9 invention patents and participated in 2 key research and development projects of the Ministry of Science and Technology.

11:35 a.m. - 12:00 noon.

Title: WISDRI's iBF Solution Promotes BLAST Furnace's Digital Transformation

Abstract: Steel enterprises play a vital role in China's economy, but are also one of the main sources of carbon emissions. Blast furnaces, featuring high yield and high volume, reduction of carbon emissions of blast furnaces is a key branch of carbon neutrality. On the other hand, blast furnaces are labeled with the "black box" characteristics of high temperature, high pressure, sealing, and continuous production, and internal information is extremely scarce, making it difficult to implement synchronous monitoring. While maintaining stable and high production, how to reduce energy consumption has always been a global challenge. At present, the informatization, intelligence, and unmanned operation of blast furnaces are recognized as the key to solving the above problems.

Based on the demand for transparency in blast furnace production and the intelligent perception core, an intelligent blast furnace solution has been gradually constructed by WISDRI Corporation Ltd., Which actualized in six steps: less production personnel, intelligent management, transparency inside the furnace, prompt warning, comprehensive evaluation, and standardized guidance. Specific measures such as real-time monitoring of key areas through intelligent monitoring instruments, analysis on the mechanism and big data information of blast furnace status, and accurate analysis and judgment of blast furnace status based on expert rules. Helping blast furnace production to operate reasonably, scientifically, and effectively, ultimately achieve indicators optimization and management improvement, and accomplish the goals of blast furnace safety, efficiency, longevity, and green.

These achievements have made us the leader and the carbon neutrality practitioner of the ironmaking industry.

Tao Ren is a Senior Engineer, and the Deputy Chief Engineer of the Intelligent Manufacturing Division of WISDRI Engineering and Research Inc. Ltd. He graduated in Control Theory and Control Engineering from HUST. His main research directions include industrial informatization and industrial intelligence.

Industry Forum 2

May 10, 10:30-12:00 Yellow Crane Hall

Trends and Advances in Industrial Automation and Autonomous Vehicles

Chairs: Yebin Wang, Victor Huang, and Michael W. Condry

Panelists:

- Pengwei Tian (Alibaba Cloud)
- Pei Huang (e-works Ltd)
- Honglin Li (Dongfeng Motors)

10:45 - 11:10 a.m.

Title: Data Intelligence for Industrial Manufacturing: Practice Sharing

Abstract: Data technology with artificial intelligence on top has been upgrading industrial manufacturing in the recent 10+ years, in both production and overall delivery process. The presentation will focus on the practice of research, development, and application of data intelligence solutions in industrial manufacturing, around multiple crucial topics like quality, production, energy, etc. with concrete technical use cases and lessons learned. The presentation aims to deliver some understanding and patterns from a practice point of view regarding how data intelligence benefits industrial manufacturing upgrading with added value.

Pengwei Tian is the Senior Technical Expert and responsible for R&D of discrete manufacturing at Alibaba Cloud. Prior to his current post, he was Head of Research Group Data Analytics and AI at Siemens Technology China. Dr. Tian Peng Wei received his Ph.D. degree from Tsinghua University and has 10+ years of R&D experience in data and AI technology for industries, with solutions widely applied cross industrial verticals incl. manufacturing, energy & power, smart city, etc.

11:10 - 11:35 a.m.

Title: Trends and Practice of Digital Transformation in Chinese Manufacturing Sector

Abstract: In this talk, I will introduce digital transformation models for manufacturing, data-driven X IIoT platform, big data analysis, and AI applications. Digital twin applications and going beyond: particularly on the digital transformation strategy toward building a digital ecosystem.

Pei Huang is the CEO and editor-in-chief of e-works, Ltd. Dr. Huang is a member of the Chinese National Intelligent Manufacturing Expert Committee. He has 32 years experience of doing research, consulting, and training in the intelligent manufacturing area, and has been actively engaged in international cooperation in the intelligent manufacturing area. Dr. Huang started up e-works in 2002, which grows into a leading platform that links manufacturing enterprises, solution providers, and academia. Dr. Huang obtained his Ph.D. degree in mechanical engineering from Huazhong University of Science and Technology, Wuhan, China, in 1997. He got a senior management certificate from Rensselaer Polytechnic Institute, Troy, NY, in 2001.

11:35 a.m. - 12:00 noon.

Title: Exploration of the Connected Collaborative Perception and Decision-Making Based on C-V2X in Dongfeng Motors

Abstract: Intelligent connected vehicles refer to a new generation of intelligent vehicles equipped with advanced onboard sensing, decision-making planning and control, execution, and other devices, and integrating modern communication and network technology, enabling vehicles to have a complex environmental perception, intelligent decision-making and control functions, and can comprehensively achieve safety, energy conservation, environmental protection, and comfortable driving. From the perspective of perception and decision-making planning control carriers, intelligent connected vehicles can be divided into autonomous intelligent vehicles and connected vehicles. Among them, the perception and decision-making planning control carrier of autonomous intelligent vehicles is vehicles, while the perception or decision-making planning control carrier of connected vehicles is composed of vehicles and roadside equipment. The onboard perception unit of autonomous intelligent vehicles has many recognition limitations in blind spots, lane recognition under adverse weather conditions, beyond the line of sight perception, traffic signal recognition, and traffic guidance, which pose certain traffic safety hazards to intelligent driving vehicles. However, roadside intelligent terminals can compensate for the perception and planning control limitations of autonomous intelligent vehicles, forming a combination of autonomous and networked vehicle road coordination solutions, Thus improving traffic safety and improving traffic efficiency.

This presentation introduces Dongfeng Motor's practice in the field of vehicle road collaboration, including system architecture design for different application scenarios, achieving target-level integration between vehicle and road ends in the designed system architecture, and mainly solving difficulties such as target spatiotemporal synchronization and fusion spatial compensation. After completing the generation of collaborative perception targets, we attempt to reconstruct traffic environment information and achieve vehicle decision planning and control in various scenarios through reinforcement learning to complete vehicle traffic tasks.

Honglin Li is the Chairman of the Intelligent Connected Vehicles Professional Technical Committee of DFM, the chief engineer of intelligent technology, and the pilot of the AI platform of DFM Technology Centre. With 20 years of working experience in the automotive industry, he has successively engaged in vehicle architecture design and intelligent driving system integration, and led the development of intelligent driving systems for multiple vehicles. Currently, he is engaged in research and engineering applications of V2X, and artificial intelligence, and serves as: an expert in the coordination of international standards and regulations of UN WP.29 GRVA; part-time doctoral supervisor for the professional degree of Wuhan University of Technology; managing director of IEEE PES Electric Vehicle Charging and Discharging Technology Subcommittee; committee member of Chinese Association for Artificial Intelligence.

Tutorials

IEEE ICPS 2023 will host two tutorials during the conference, addressing 1) Advanced Technologies for Industrial Systems: Cyber-Security Protection, Intelligent Control, and Data Analytics, and 2) Advanced Technologies for Industrial Systems: Intelligent Alarm Monitoring and Applications. Tutorials in IES conferences can provide an opportunity for attendees to learn about a specific topic or technology in a structured and focused manner. They can help to supplement the knowledge gained from attending talks and sessions, and provide attendees with a deeper understanding of a particular area.

Organizers:

Wenkai Hu China University of Geosciences China

Jiandong Wang
Shandong University of Science and Technology
China

Chuan-Ke ZhangChina University of Geosciences
China

Tutorial 1

May 8, 14:00-15:30 Jingzhou Hall

Advanced Technologies for Industrial Systems: Cyber-Security Protection, Intelligent Control, and Data Analytics

Presenters:

- Chunjie Zhou (Huazhong University of Science and Technology)
- Chunjie Yang (Zhejiang University)
- Fan Yang (Tsinghua University)

This tutorial is designed to provide attendees with a comprehensive overview of the latest advancements in the fields of cyber-security protection, intelligent control, and data analytics in industrial systems. The tutorial is comprised of three talks. The first one will focus on the importance of cyber-security for industrial systems in the age of the industrial internet and explore advanced techniques against cyber-attacks. The second one will delve into the key technologies and applications of high-performance intelligent operation control of large blast furnace ironmaking systems. The third one will illustrate the importance of data analytics in identifying the root cause of system failures and optimizing system performance, and explore real-world case studies about the application of these techniques in industrial systems. The tutorial will be led by leading experts in this field, who will provide attendees with valuable insights and practical knowledge that can be applied to industrial systems.

14:00 - 14:30 p.m.

Title: Cyber Security Protection Technology for Control Systems in the Context of Industrial Internet

Abstract: Industrial control systems are typical examples of complex cyber-physical systems that play a vital role in the national economy and people's daily lives. As critical national infrastructure, they have widespread applications across various industries. With the increasing adoption of industrial internet technologies and the deep integration of informatization and industrialization, the issue of information security in industrial control systems has become increasingly prominent. However, the operational modes, working characteristics, and structural features of industrial control systems make their information security issues different from those of traditional IT systems. This report first introduces industrial internet technologies and analyzes the information security protection framework of the industrial internet. Then, based on the characteristics of industrial control systems, it provides a detailed analysis of the unique information security issues and challenges of control systems in the industrial internet environment. Finally, the report discusses possible solutions to information security protection in this context and introduces the key technologies involved.

Chunjie Zhou is a distinguished professor, doctoral supervisor, and Special Class I professor of the Huazhong Scholars Program at Huazhong University of Science and Technology. He has received the Baosteel Outstanding Teacher Award and serves as a member of the Teaching Steering Committee for Automation in Higher Education Institutions under the Ministry of Education. He is also the Associate Dean of the School of Artificial Intelligence and Automation at Huazhong University of Science and Technology and the Chairman of the Wuhan Automation Association. His research focuses on the security of the industrial internet and industrial cyber-physical systems. As a principal investigator, he has led projects funded by the National Natural Science Foundation, national key research and development plans, and other national programs. He has published over 40 academic papers in significant domestic and international journals and conferences and has been invited to contribute articles to prestigious journals like Proceedings of the IEEE. He has also published more than 20 papers in top-tier international journals such as IEEE Transactions. He has participated in the development of over 10 national standards related to the security of industrial control systems and held more than 20 authorized national invention patents.

14:30 - 15:00 p.m.

Title: Key technology and application of high-performance intelligent operation control of large blast furnace ironmaking system

Abstract: High-performance operation control of large blast furnace iron-making system is a major demand for "safe, high-quality, efficient and low-carbon" operation of the iron and steel industry. This report addresses the challenges of high-performance operation control brought by the high smelting temperature, high spatial and temporal dynamics, and high complexity of the large blast furnace ironmaking system, describes the key technologies of intelligent sensing, intelligent diagnosis and safe operation, and intelligent optimized cooperative control of the system, introduces the system development and implementation results, and discusses the future research direction and challenges.

Chunjie Yang is a distinguished professor of Zhejiang University, doctoral supervisor, deputy director of the National Engineering Research Center for Industrial Automation, an expert enjoying the special government allowance of the State Council, and a winner of the first prize of the National Science and Technology Progress Award. He is a standing member of Technical Committee on Process Control, member of Metallurgical Automation Branch of Chinese Society of Metals. He is mainly engaged in research on Industrial Internet, digital twins, optimal control and fault diagnosis of ironmaking system, etc. He has presided over a number of important scientific research work such as the Industrial Internet Innovation and Development Project of the Ministry of Industry and Information Technology of the People's Republic of China and the key projects of the National Natural Science Foundation of China. He authorized over 50 invention patents, published over 100 academic papers, won one first prize and two second prizes of the National Science and Technology Progress Award, and six provincial and ministerial level science and technology awards.

15:00 – 15:30 p.m.

Title: Causality and Root Cause Analysis Based on Data Analytics

Abstract: This presentation will introduce advanced alarm strategy and abnormal situation monitoring based on process data analytics and, in particular, correlation/causality analysis based on mining of process and alarm data in combination with process connectivity knowledge, with applications to root cause analysis of propagated or even plant-wide abnormalities. The methods of Granger causality and transfer entropy will be demonstrated.

Fan Yang received the B.Eng. degree in Automation and the Ph.D. degree in Control Science and Engineering from Tsinghua University, Beijing, China, in 2002 and 2008, respectively. After working as a Postdoctoral Fellow with Tsinghua University and the University of Alberta, he joined the Department of Automation, Tsinghua University in 2011, where he is currently a Professor. His research interests include topology modeling of large-scale processes, abnormal events monitoring, process hazard analysis, and smart alarm management. He was a recipient of the Young Research Paper Award from the IEEE Control Systems Society Beijing Chapter in 2006, the Science and Technology Progress Award from the Chinese Association of Automation in 2018, the Zhang Zhongjun Excellent Paper Award in 2019, and the Teaching Achievement Awards from Tsinghua University in 2012, 2014, 2016, and 2019 and from the Chinese Association of Automation in 2016.

Tutorial 2

May 8, 15:40 – 17:10 Jingzhou Hall

Advanced Technologies for Industrial Systems: Intelligent Alarm Monitoring and Applications

Presenters:

- Chunli Wang (SINOPEC Research Institute of Safety Engineering Co., Ltd)
- Jiandong Wang (Shandong University of Science and Technology)
- Jun Shang (Tongji University)

Alarm systems are critical assets for the operational safety and efficiency of modern complex industrial facilities. However, the presence of nuisance alarms and alarm floods severely impair the performance of alarm systems, compromise the safety of system operations, and may even cause catastrophic consequences. Extensive studies have been conducted by both academic scholars and industrial practitioners to develop new techniques for industrial alarm monitoring. Advanced tools such as machine learning, data mining, deep learning, and causality inference have been applied successfully to alarm system design and alarm data analysis and have been proven excellent in reducing nuisance alarms and handling alarm floods based on experimental results and practical applications. The objective of this workshop is to introduce recent advances in industrial alarm monitoring, present new ideas through presentations and discussions, as well as attract more academic researchers and industrial practitioners into working and shaping this fascinating research area. Interesting topics in this workshop include alarm system design, reduction of nuisance alarms, alarm flood analysis, etc. In addition, speakers from the industry will discuss practical issues and solutions in real alarm management and also present implementations of advanced alarm management techniques.

15:40 - 16:10 p.m.

Title: Introduction to Alarm Management Standards, Technologies, and Applications in the Petrochemical Industry

Abstract: This report will mainly introduce domestic and international alarm management standards and discuss in detail the history of alarm management standards in the petrochemical industry. It will also systematically introduce alarm system performance evaluation and optimization technologies, advanced alarm management technologies, and the application of these alarm management and technologies in actual chemical industries.

Chunli Wang is an Expert and a Professorial Senior Engineer at the SINOPEC Research Institute of Safety Engineering Co., Ltd. He has been consistently engaged in the research and development of intelligent monitoring and early warning technology for abnormal conditions, process control and optimization technology, and process safety management in the petrochemical industry, and participated in writing the first national standard for alarm management in China, namely, "Process Industry Alarm System Management."

16:10 - 16:40 p.m.

Title: Optimal Design of Multivariate Alarm Systems Based on Normal Operating Zones

Abstract: This talk will focus on the optimal design of multivariate alarm systems with multiple-correlated process variables. The geometric space formulated by allowable variational ranges of process variables is called the normal operating zone (NOZ). If an operating point is inside the NOZ, then the operating condition is regarded as being normal; otherwise, an alarm arises to indicate the deviation of an operating point from the NOZ. The NOZ model is built, and dynamic alarm thresholds are designed to implement such a multivariate alarm system. Numerical and

industrial examples will be provided to illustrate the design methods.

Jiandong Wang is a Professor in the College of Electrical Engineering and Automation at the Shandong University of Science and Technology, Qingdao, Shandong Province, China. He received the B.E. in Automatic Control from Beijing University of Chemical Technology, Beijing, China, in 1997, and the M.Sc. and Ph.D. in Electrical and Computer Engineering from the University of Alberta, Canada, in 2003 and 2007, respectively. From 1997 to 2001, he was a Control Engineer with the Beijing Tsinghua Energy Simulation Company, Beijing, China. From December 2006 to October 2016, he was an Assistant/Associate/Full Professor with the College of Engineering, Peking University, China. His research interests include process control, industrial alarm systems, optimal scheduling, and their applications to industrial problems. Dr. Wang has served as an Associate Editor/Guest Editor for Journal of Franklin Institute, Systems and Control Letters, and Control Engineering Practice.

16:40 – 17:10 p.m.

Title: Feature Vectors in the Early Classification of Alarm Floods

Abstract: Early classification of ongoing alarm floods in industrial monitoring systems is crucial for safe and efficient operations. It provides online decision support for plant operators to take timely action without waiting for the end of an alarm flood. This presentation discusses feature vectors in the problem of early classification of alarm floods. We will analyze the properties of different feature vectors in different approaches. We will also discuss the advantages and disadvantages of different feature vectors in the sense of classification accuracy, computational complexity, and generalization ability.

Jun Shang received the B.Eng. degree in control science and engineering from Harbin Institute of Technology, Harbin, China, in 2013, and the Ph.D. degree in control science and engineering from Tsinghua University, Beijing, China, in 2018. From September 2018 to January 2023, he was a Postdoctoral Fellow with the Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada. He is currently a Professor with the Department of Control Science and Engineering, Tongji University, Shanghai, China. His research interests include cyber-physical security, alarm management, fault diagnosis, and networked control.

ICPS2023 Program at a Glance

Program at a Glance

IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS)
Wuhan, China
May 8-11, 2023

May 8 (Monday)		May 9 (Tuesday)		May 10 (Wednesday)		May 11 (Thursday)
Registration: Wuhan East Lake International Conference Center Time: May 8, 8:00-22:00 Tutorial 1: May 8, 14:00-15:30 Tutorial 1 by Chunjie Zhou, Chunjie Yang, Fan Yang. Tutorial 2: May 8, 15:40-17:10	08:30-08:50 08:50-09:10 09:10-10:10 10:10-10:30 10:30-12:00	Keynotes 1 by Xiaohong Guan	09:00-10:00 10:00-10:30 10:30-12:00	Keynotes 2 Keynotes 2 by Peng Shi Tea Break Industry Forum 2 Industry Forum 2 by Pengwei Tian, Pei Huang, Honglin Li.	09:30-09:50 09:50-10:50	Keynotes 3 Keynotes 3 by Shinji Hara Tea Break Poster Sessions ThA01 Closing Ceremony
Tutorial 2 by Chunli Wang, Jiandong Wang, Jun Shang. Venue: Jingzhou Hall	12:00-13:30 L No.2 Tingtao I 13:30-15:30 15:30-15:50 15:50-18:10	unch Floor, Oriole Hall Oral Sessions TuA01-05 Break Oral Sessions TuB01-05	12:00-13:30 I No.2 Tingtao 13:30-15:30 15:30-15:50 15:50-17:50	Junch Floor, Oriole Hall Oral Sessions WeA01-05 Break Oral Sessions WeB01-05	11:30-13:30 L No.2 Tingtao	unch Floor, Oriole Hall
				Conference Banquet Floor, Haiguang Hall, Lingbo Hall, Bailu Hall		

ICPS2023
Timetable Technical Program

Timetable of Technical Program

	Monday, May 8, 2023, Wuhan East Lake International Conference Center (ELICC)									
08:00-22:00	Registration									
14:00-15:30	Tutorial 1: Advanced Technologies for Industrial Systems: Cyber-Security Protection, Intelligent Control, and Data Analytics, Presenters: Chunjie Zhou, Chunjie Yang, Fan Yang, Venue: Jingzhou Hall									
15:40-17:10	Tutorial 2: Advanced Technologies for Industrial Systems: Intelligent Alarm Monitoring and Applications, Presenters: Chunli Wang, Jiandong Wang, Jun Shang, Venue: Jingzhou Hall									
	Tuesday, May 9, 2023, Wuhan East Lake International Conference Center (ELICC)									
08:30-08:50	Opening Ceremony									
08:50-09:10			Group Photo							
09:10-10:10]	Keynotes 1 : Cyber-Physical Energy Systems for	or the Energy Revolution, Prof. Xiaohong Gu	an, Venue: Yellow Crane Hall, Chair: Xin Che	n					
10:10-10:30			Tea Break							
10:30-12:00	Industry Forum 1: Sensor Ne	etworks toward Autonomy and Sustainability, L			ang, Venue: Yellow Crane Hall					
12:00-13:30			Lunch, Venue: No.2 Tingtao Floor, Oriole Ha							
Time/Room	Qianjiang Hall	Jasmine Hall	Lilac Hall	Tianmen Hall	Xiantao Hall					
-	TuA01	TuA02	TuA03	TuA04	TuA05					
13:30-15:30	Engineering (1)	Engineering (2)	Data-driven fabrication and control for autonomous robots	Advanced Control in Aerospace Cyber- Physical and Autonomous Systems	Best Paper Award Finalist					
15:30-15:50			Break							
	TuB01	TuB02	TuB03	TuB04	TuB05					
15:50-18:10	Theory and Technologies (1)	Active Disturbance Rejection and Intelligent Control for Industrial Systems	Distributed Cooperative Control of Multi- agent Systems and Its Applications	Theories, Technologies and Applications of Intelligent and Connected Vehicles	Digital Twin for Industrial IoT					
		Wednesday, May 10, 2023, V	- Wuhan East Lake International Conference Ce	enter (ELICC)						
09:00-10:00		Keynotes 2: Cyber-physical systems:	Analysis and Design, Prof. Peng Shi, Venue:	Yellow Crane Hall, Chair: Jundong Wu						
10:00-10:30			Tea Break							
10:30-12:00	Industry Forum 2: Trends and Ad	dvances in Industrial Automation and Autonom	ous Vehicles, Lecturers: Pengwei Tian, Pei H Venue: Yellow Crane Hall	Iuang, Honglin Li, Chairs: Yebin Wang, Victor	or Huang, and Michael W. Condry,					
12:00-13:30		I	Lunch, Venue: No.2 Tingtao Floor, Oriole Ha	11						
Time/Room	Qianjiang Hall	Jasmine Hall	Lilac Hall	Tianmen Hall	Xiantao Hall					
	WeA01	WeA02	WeA03	WeA04	WeA05					
13:30-15:30	Theory and Technologies (2)	Representation Learning Theories, Methods, and Algorithms with Application to Health Management of Complex Equipment	Recent Advances on Networked Control Systems: Analysis and Synthesis	Fault and Attack Detection for Interconnected Systems	Cybersecurity of the Future DER-based Power Grid					
15:30-15:50			Break							
15:50-17:50	WeB01	WeB02	WeB03	WeB04	WeB05					
	Applications (1)	Applications (2)	Data Oriented Prognostics and Health Management for Industrial Systems (1)	Data Oriented Prognostics and Health Management for Industrial Systems (2)	Application of Artificial Intelligence in Iron and Steel Metallurgy Process					
18:00-20:00	18:00-20:00 Conference Banquet, Venue: No.2 Tingtao Floor, Haiguang Hall, Lingbo Hall, Bailu Hall									
	Thursday, May 11, 2023, Wuhan East Lake International Conference Center (ELICC)									
08:30-09:30	Keynotes 3: Glocal (Global/Local	l) Control for Hierarchical Cyber Physical Syst	tems: Theoretical Foundation towards Praction	cal Applications, Prof. Shinji Hara, Venue: Ye	ellow Crane Hall, Chair: Jinhua She					
09:30-09:50			Tea Break							
09:50-10:50	Poster Session ThA01, Venue: Yellow Crane Hall									
10:50-11:20			Closing Ceremony, Venue: Yellow Crane Hal	11						
11:30-13:40	11:30-13:40 Lunch, Venue: Yellow Crane Hall									
	Technical Tracks	Special Sessions	Best Paper							

Technical Program

Tuesday, May 9, 2023

Keynote 1	9:10-10:10	Yellow Crane Hall	●TuA01-4	14:30-14:50
Keynote 1			Life Cycle Ecol	nomic Policy for Multi-Level Imperfect
Chair: Xin Chen	Ch	nina Univ. of GeoSci.	Maintenance and	l Repairman Assignment
Cyber-physical Energy	Systems for the	Energy Revolution	Shunkang Zhao	Chongqing Univ.
Xiaohong Guan		Xi'an Jiaotong Univ.	Xiaohui Chen	Chongqing Univ.
Industry Forum 1	10:30-12:00	Yellow Crane Hall	Youjun An	Chongqing Univ.
Industry Forum 1			Ziye Zhao	Chongqing Univ.
Chair: Zhibo Pang		ABB/KTH	●TuA01-5	14:50-15:10
Chair: Allen Chen		Innovatech	Edge-enabled Ze	ro Trust Architecture for ICPS with Spatial
Chair: Victor Huang		Onlye Solutions	and Temporal Gi	ranularity
Industry Forum 1		10:30-12:00	Wenxin Lei	Univ. of Electronic Sci. & Tech. of China
Sensor Networks towar	d Autonomy an	d Sustainability	Zhibo Pang	ABB Corporate Research Center
Panpan Hu		VanJee Tech.	Hong Wen	Univ. of Electronic Sci. & Tech. of China
Ying Shi	Zheji	iang Supcon Co., Ltd	Wenjing Hou	Univ. of Electronic Sci. & Tech. of China
Tao Ren	WISDRI Eng	gineering & Research	Xiaoling Zhang	Northeastern Univ.
		Incorporation Ltd.	●TuA01-6	15:10-15:30
TuA 01	13:30-15:30	Qianjiang Hall	Improving the Tr	raceability of Wood-based Sheet Leftovers
Engineering			using Computer	
Chair: Dawei Shi	В	Beijing Univ. of Tech.	Nuno Guedes	Laboratory Collaborative
Co-Chair: Wenxin Lei	Univ. of El	ectronic Sci. & Tech.		Mountains of Research
		of China	Iaggo Capitanio	SusTEC - Associate
●TuA01-1		13:30-13:50		Laboratory for Sustainability
A Practical Vision-	Aided Multi-	Robot Autonomous		& Tech. in Mountains Regions
Navigation using Conv	olutional Neura	al Network	Higor Vendramir	•
Alexandre Rocchi		Dalhousie Univ.		Mountains of Research
Zike Wang		Dalhousie Univ.	João Paulo Coell	
Yajun Pan		Dalhousie Univ.		Laboratory for Sustainability
●TuA01-2		13:50-14:10	I / D 1	& Tech. in Mountains Regions
Online Learning-based	l Trust Predicti	ion for Reliable and	José Barbosa	Collaborative Laboratory
Energy-efficient Transn	nission		31/1' D'	Mountains of Research
Xiaolin Wang	East China	Univ. of Sci. & Tech.	Nélio Pires	Carpintaria Mofreita Lda.
Jinglong Zhang	East China	Univ. of Sci. & Tech.	João Magalhães	NKA - New Knowledge
Xuanzhao Lu	East China	Univ. of Sci. & Tech.	T + 00	Advice Lda.
Xiaojing Wen	East China	Univ. of Sci. & Tech.	TuA 02	13:30-15:30 Jasmine Hall
Fangfei Li	East China	Univ. of Sci. & Tech.	Engineering	
●TuA01-3		14:10-14:30	Chair: Yuzhe Li	Northeastern Univ.
An Input Module of Dec	ep Learning for	the Analysis of Time	Co-Chair: Ancai	·
Series with Unequal Le	ength		●TuA02-1	13:30-13:50
Hewei Gao		Harbin Inst. of Tech.		trol by Using Equivalent Input Disturbance
Xin Huo		Harbin Inst. of Tech.	Method	
Chao Zhu	Shanghai Ri	ising Digital Co, Ltd.	Toshiki Watanab	Tokyo Univ. of Tech.

Jinhua She	Tokyo Univ. of Tech.	Jun Zhao Nai	ntong Power Supply Branch of State
Zewen Wang	China Univ. of GeoSci.	G	Grid Jiangsu Electric Power Co., Ltd.
●TuA02-2	13:50-14:10	●TuA02-6	15:10-15:30
A StyleGAN3-Bo	ased Data Augmentation Method for	Towards an Interdisci	plinary Technical Debt Interaction
Ceramic Defect L	Detection	and Visualization Tool	
Huimin Ou	China Univ. of GeoSci.	Fandi Bi	Technical Univ. of Munich
Jianqi An	China Univ. of GeoSci.	Birgit Vogel-Heuser	Technical Univ. of Munich
Xing-ao Wang	China Univ. of GeoSci.	Edgar Benet Sapera	Technical Univ. of Munich
Jianru Xiong	China Univ. of GeoSci.	TuA 03	13:30-15:30 Lilac Hall
Xin Chen	China Univ. of GeoSci.	Data-driven fabrication	and control for autonomous robots
Qingyi Wang	China Univ. of GeoSci.	Chair: Renjie Ma	Harbin Inst. of Tech.
●TuA02-3	14:10-14:30	Co-Chair: Zhijian Hu	Nanyang Technological Univ.
Challenges and O	Apportunities of DevOps in Cyber-Physical	●TuA03-1	13:30-13:50
Production System		Cooperative Adaptive	Cruise Control for Vehicles under
István Koren	RWTH Aachen Univ.	False Data Injection A	•
Felix Rinker	Inst. of Information Systems	Zhongwei Feng	Northeast Agricultural Univ.
	Engineering, TU Wien	Keyun Qin	Northeast Agricultural Univ.
Kristof Meixner	Inst. of Information Systems	Xiaohang Jiao	Northeast Agricultural Univ.
	Engineering, TU Wien	Feifei Du	Northeast Agricultural Univ.
Jasminka Matevsl		Dongshen Li	Northeast Agricultural Univ.
Jörg Walter	OFFIS-Inst. for Information Tech.	●TuA03-2	13:50-14:10
•TuA02-4	14:30-14:50		phy Information Extraction and
	oring Signal Denoising of Industrial	Manipulator Copying	programment zun detrem und
Machine Transmi		Xinyuan Cao	Shanghai Jiao Tong Univ.
Ran Hua	Nantong Power Supply Branch of State	Shaoyuan Li	Shanghai Jiao Tong Univ.
Tull Huu	Grid Jiangsu Electric Power Co., Ltd.	•TuA03-3	14:10-14:30
Jianxin Shao	Nantong Power Supply Branch of State		d Active Thermal-Stream-Control
	Grid Jiangsu Electric Power Co., Ltd.	Shell Infilled with the (
Cencheng Pan	Nantong Power Supply Branch of State	Lin Yu	Beijing Inst. of Astronautical
cononiong run	Grid Jiangsu Electric Power Co., Ltd.	Dili Tu	System Engineering
Songyao Xing	Nantong Power Supply Branch of State	Yi Qin	Beijing Inst. of Astronautical
Zongjuo ming	Grid Jiangsu Electric Power Co., Ltd.	11 //111	System Engineering
Weichao Huang	Nantong Power Supply Branch of State	Zenghao Lin	Harbin Inst. of Tech.
Welchao Huang	Grid Jiangsu Electric Power Co., Ltd.	Huichun Tian	Harbin Inst. of Tech.
•TuA02-5	14:50-15:10	Xi Sheng	Beijing Inst. of Astronautical
	rent Characteristic Value of High-Voltage	At Stieng	System Engineering
	witching Coil based on Empirical Wavelet	Yuxi Zhang	Beijing Inst. of Astronautical
Transform	witching Con bused on Empirical Wavelet	Tuxi Zhang	System Engineering
Xuefeng Ding	Nantong Power Supply Branch of State	Jianxin Qiao	Harbin Inst. of Tech.
Aucieng Ding	Grid Jiangsu Electric Power Co., Ltd.	●TuA03-4	14:30-14:50
Mingyu Gu	Nantong Power Supply Branch of State		
winigyu Ou	Grid Jiangsu Electric Power Co., Ltd.	Constraint for Feature	gorithm with Fractal Dimension
Gufana Via		· ·	Guangdong Univ. of Sci. & Tech.
Gufeng Xia	Nantong Power Supply Branch of State Grid Jiangsu Electric Power Co., Ltd.	Min Zeng Haimiao Mo	Hefei Univ. of Tech.
Hongohano	=		
Hongcheng	Nantong Power Supply Branch of State	Zhiming Liang	Fifth Affiliated Hospital of
Jiang	Grid Jiangsu Electric Power Co., Ltd.		Guangzhou Medical Univ.

Hua Wang	Guangdong Univ. of Sci. & Tech.	Bin Song	Aerospace System Engineering,	
●TuA03-5	14:50-15:10		Shanghai	
	nti-disturbance Flight Control for	Qinglei Hu	Beihang Univ.	
	Unmanned Helicopters with State	•TuA04-4 14:30-14:50		
Constraints		Switching Control of 2-D Kuramoto-Sivashinsky Equation		
Yankai Li	Xi'an Univ. of Tech.	under Averaged		
Yulong Huang	Xi'an Univ. of Tech.	Jing Zhang	Univ. of Sci. & Tech. Beijing	
Han Liu	Xi'an Univ. of Tech.	Wen Kang	Beijing Inst. of Tech.	
Jiajie Li	Xi'an Univ. of Tech.	●TuA04-5	14:50-15:10	
●TuA03-6	15:10-15:30	Boundary Prote	ection Control of a Hybrid Vertical Take-Off	
Research on Testing of	and Evaluation of USV Formation	and Landing U		
Control based on Nonli	inear Dynamic Inversion	Tongqing Chen	Hohai Univ.	
Shun Li	Jiangsu Univ. of Sci. & Tech.	Dawei Wu	Hohai Univ.	
Wentao Xue	Jiangsu Univ. of Sci. & Tech.	Shenjie Xv	Hohai Univ.	
Hui Ye	Jiangsu Univ. of Sci. & Tech.	Bolin Wang	Hohai Univ.	
Hao Zhang	Jiangsu Univ. of Sci. & Tech.	Xiaoqi Huang	Hohai Univ.	
TuA 04	13:30-15:30 Tianmen Hall	●TuA04-6	15:10-15:30	
Advanced Control in	n Aerospace Cyber-Physical and	Spacecraft Attit	tude Control based on Iterative Sequential	
Autonomous Systems		Action Control		
Chair: Kenan Yong	Nanjing Univ. of Aeronautics	Guanhua Huang	Central South Univ.	
	and Astronautics	Caisheng Wei	Central South Univ.	
Co-Chair: Zeyang Yin	Central South Univ.	Zeyang Yin	Central South Univ.	
●TuA04-1	13:30-13:50	TuA 05	13:30-15:30 Xiantao Hall	
Fault-Tolerant Attitude	Tracking Control for Satellite based	Best paper awar	rd finalist	
on Event-Triggered Tra	uining	Chair: Yong He	China Univ. of GeoSci.	
Baomin Li	Nanjing Univ. of Aeronautics and	Co-Chair: Chun	nhui Zhao Zhejiang Univ.	
	Astronautics	●TuA05-1	13:30-13:50	
Kenan Yong	Nanjing Univ. of Aeronautics and	Multimode DA	LSTM Model for Anomaly Detection of	
	Astronautics	Nuclear Reacto	r Core	
Shuyi Shao	Nanjing Univ. of Aeronautics and	Yingnan Wang	Zhejiang Univ.	
	Astronautics	Xin Wang	China Nuclear Power Engineering Co.	
●TuA04-2	13:50-14:10		Ltd., Shenzhen	
Event-triggered-based	Control for Dynamic Positioning	Yinglong Wan	Zhejiang Univ.	
Vessels Subject to Exter	rnal Disturbances	Xianmin Li	China Nuclear Power Engineering Co.	
Haibin Wang	Harbin Univ. of Sci. & Tech.		Ltd., Shenzhen	
Bo You	Harbin Univ. of Sci. & Tech.	Chunhui Zhao	Zhejiang Univ.	
Ziyang Xiao	Harbin Research Inst. of Electrical	Zhihong Lv	China Nuclear Power Engineering Co.	
	Instruments Co., Ltd.		Ltd., Shenzhen	
Weisong Cai	Harbin Research Inst. of Electrical	●TuA05-2	13:50-14:10	
-	Instruments Co., Ltd.		e Charging Load Time-Series Prediction	
Jingjing Li	Harbin Research Inst. of Electrical		Learning System	
	Instruments Co., Ltd.	Wang Sike	State Grid Hubei Electric Power Co., Ltd.	
●TuA04-3	14:10-14:30	Yu Liansong	State Grid Electric Power Research Inst.	
	le Tracking Control for Spacecraft		Wuhan Nanrui Co.,Ltd.	
with Flexible Performa		Pang Bo	State Grid Hubei Electric Power Co., Ltd.	
Yiqi Xu	Beihang Univ.	Zhu Xiaohu	State Grid Electric Power Research Inst.	

	Wuhan Nanrui Co.,Ltd.	Parameter CPSs
Cao Peng	State Grid Hubei Electric Power Co., Ltd.	Tengfei Li Foshan Univ.
Shen Yang	State Grid Electric Power Research Inst.	Ju H. Park Yeungnam Univ.
	Wuhan Nanrui Co.,Ltd.	●TuB01-3 16:30-16:50
●TuA05-3	14:10-14:30	Intelligent Vehicle Trajectory Tracking Control based on
Obstacle Dete	ection of Unmanned Surface Vessel based on	H∞ Proportional-differential Controller
Faster RCNN		Gongwei Pan Wuhan Univ. of Tech.
Jiahe Cai	China Univ. of GeoSci.	Zhiyong Feng Wuhan Univ. of Tech.
Sheng Du	China Univ. of GeoSci.	Huiru Guo Wuhan Univ. of Tech.
Chengda Lu	China Univ. of GeoSci.	●TuB01-4 16:50-17.10
Bo Xiao	Guangzhou Marine Geological Survey	Research on Dynamic Labels in Network Pruning
Min Wu	China Univ. of GeoSci.	Lijun Zhang China Univ. of GeoSci.
●TuA05-4	14:30-14:50	Yaomin Luo China Univ. of GeoSci.
Similarity And	alysis of Industrial Alarm Floods Based on	Shiqi Xie China Univ. of GeoSci.
Word Embeddi	ing and Move–Split–Merge Distance	Xiucheng Wu China Univ. of GeoSci.
Xiangxiang Zh	hang China Univ. of GeoSci.	•TuB01-5 17:10-17:30
Wenkai Hu	China Univ. of GeoSci.	Interference Suppression of Circulating Current
Ahmad W. Al-	-Dabbagh Univ. of British Columbia	Fluctuation Based on Equivalent Input Disturbance in
Weihua Cao	China Univ. of GeoSci.	Parallel Inverter
●TuA05-5	14:50-15:10	Zili Tao China Univ. of GeoSci.
Stealthy Dat	ta Integrity Attacks Against Grid-tied	Min Ding China Univ. of GeoSci.
Photovoltaic S	Systems	Bo Hu STATE GRID Corporation of China, Beijing
Sha Peng	Zhejiang Univ.	Meng Ye China Univ. of GeoSci.
Mengxiang Li	u Imperial College London	●TuB01-6 17:30-17:50
Ke Zuo	Zhejiang Univ.	Observer-Based Robust Adaptive Control for the
Wei Tan	Shanghai Hanxiang Intelligent	Synchronization of Uncertain Multiple Robot Manipulators
	Technology Co.,Ltd.	Abdul Rehan Khan Mohammed Univ. of Warwick
Ruilong Deng	Zhejiang Univ.	Jiayi Zhang Univ. of Warwick
●TuA05-6	15:10-15:30	Benjamin Silverstone Univ. of Warwick
Allocating De	fense Resources for Spatial Cyber-physical	Ahmad Bilal Univ. of Warwick
Power Systems	s based on Deep Reinforcement Learning	●TuB01-7 17:50-18:10
Zhengcheng D	Dong Wuhan Univ.	Encoding Techniques on Multivariate Time Series Signals
Mian Tang	Army Engineering Univ. of PLA	for Failure Prevention of Industrial Assets with
Meng Tian	Wuhan Univ.	Unsupervised Deep Anomaly Detection
TuB 01	15:50-18:10 Qianjiang Hall	Fatih S. Bayram Heilbronn Univ. of Applied Sciences
Theory and Te	echnologies	Md Nur Amin Heilbronn Univ. of Applied Sciences
Chair: Min Din	ng China Univ. of GeoSci.	Aleksandra Melke Operational Excellence Adolf Würth
Co-Chair: Ten		GmbH & Co. KG
●TuB01-1	15:50-16:10	Roland Schneider Operational Technology Adolf Würth
Deep Reinforc	rement Learning based Demand Response for	GmbH & Co. KG
Domestic Vari	able Volume Water Heater	Roman Radtke Heilbronn Univ. of Applied Sciences
Lei Chen	Xiangtan Univ.	Alexander Jesser Heilbronn Univ. of Applied Sciences
Yongxin Su	Xiangtan Univ.	TuB 02 15:50-18:10 Jasmine Hall
Tao Zhang	Xiangtan Univ.	Active Disturbance Rejection and Intelligent Control for
●TuB01-2	16:10-16:30	Industrial Systems
Ouantized Fin	nite-Time H∞ Control of Fuzzy Distributed	Chair: Youwu Du Jiangsu Univ. of Tech.

Co-Chair: Zixin Huang	Wuhan Inst. of Tech.	Ancai Zhang	Linyi Univ.
●TuB02-1	15:50-16:10	Fengzeng Zhu	Linyi Univ.
A Consecutive Control	l Strategy based on Quadratic	Haonan Zhang	Linyi Univ.
Differentiable Traject	tory for Planar Multi-link	●TuB02-7	17:50-18:10
Underactuated Manipula	ator with Passive last joint	An Investigation of M	ulti-Pattern Load Altering Attack
Huang Zixin	Wuhan Inst. of Tech.	Detection	
Hou Mengyu	Wuhan Inst. of Tech.	Yunpeng Wang	China Univ. of Mining & Tech.
Wei Ziang	Wuhan Inst. of Tech.	Chunyu Chen	China Univ. of Mining & Tech.
Wang Wei Zhon	gnan Univ. of Economics and Law	Kaifeng Zhang	Southeast Univ.
Hua Yong	Wuhan Inst. of Tech.	TuB 03	15:50-18:10 Lilac Hall
Wang Lejun	Chongqing Univ. of Posts &	Distributed Cooperative	e Control of Multi-agent Systems
	Telecommunications	and Its Applications	
●TuB02-2	16:10-16:30	Chair: Xiaowei Jiang	China Univ. of GeoSci.
Trajectory Planning an	nd Tracking Control Strategy for	Co-Chair: Xiangyong C	hen Linyi Univ.
Space Underactuated I	Manipulator via Particle Swarm	•TuB03-1	15:50-16:10
Optimization		A Data Enhancement St	rategy for Multi-Agent Cooperative
Houneng Wang	Wuhan Inst. of Tech.		Reinforcement Learning
Yong Hua	Wuhan Inst. of Tech.	Zhenkun Gao	Jilin Univ.
Zixin Huang	Wuhan Inst. of Tech.	Xiaoyan Dai	Jilin Univ.
Ziang Wei	Wuhan Inst. of Tech.	Meibao Yao	Jilin Univ.
Chengsong Yu	Wuhan Inst. of Tech.	Xueming Xiao	Changchun Univ. of Sci. & Tech.
Lejun Wang	Chongqing Univ. of Posts and	•TuB03-2	16:10-16:30
	Telecommunications	Impulsive Formation	Control of Nonlinear Leader-
●TuB02-3	16:30-16:50	-	Systems with Input Saturation
Horizontal Path-follow	ing Control based on ESO for	Ni Zhang	China Univ. of GeoSci.
Parafoil Systems with En	ror Constraint	Xiaowei Jiang	China Univ. of GeoSci.
Erlin Zhu	Jiangsu Univ. of Tech.	Xianhe Zhang	Hubei Normal Univ.
Youwu Du	Jiangsu Univ. of Tech.	Le You	China Univ. of GeoSci.
Haitao Gao	Anhui Sci. & Tech. Univ.	●TuB03-3	16:30-16:50
Wei Song	Jiangsu Univ. of Tech.	Optimal State Synchron	ization for Discrete-Time Nonlinear
●TuB02-4	16:50-17:10	Multi-Agent Systems	under Switching Communication
An Model-predictive-end	ıbled Equibalent-input-disturbance	Graph	
Approach for Disturbane	ce Rejection	Wenpeng He	China Univ. of GeoSci.
Yujian Zhou	China Univ. of GeoSci.	Xin Chen	China Univ. of GeoSci.
Jinhua She	Tokyo Univ. of Tech.	Sun Yipu	China Univ. of GeoSci.
Feng Wang	China Univ. of GeoSci.	Akinori Sekiguchi	Tokyo Univ. of Tech.
Makoto Iwasaki	Nagoya Inst. of Tech.	Jinhua She	Tokyo Univ. of Tech.
●TuB02-5	17:10-17:30	●TuB03-4	16:50-17:10
The Topology Optimizat	ion of Compliant Mechanism with	Stabilization of Stoch	astic Linear Systems via Path-
0/1 solutions based on S	IMP and SSV Constraint	dependent Feedback Co	•
Xiangyang Zhou	Wuhan Textile Univ.	Ruizhe Yu	China Univ. of GeoSci.
Shilin Wu	Wuhan Textile Univ.	Xiaofeng Zong	China Univ. of GeoSci.
●TuB02-6	17:30-17:50	•TuB03-5	17:10-17:30
Robust Tracking Contro	ol of LCL-Type Inverter based on		Incertain Multiagent Systems with
Fixed-Time Extended Ob	oserver Method	Time-Delays and Multip	
Mengling Ma	Linyi Univ.	Guoliu Chen	China Univ. of GeoSci.

Xiaofeng Zong	China Univ. of GeoSci.	●TuB04-4	16:50-17:10
•TuB03-6 17:30-17:50			Method using Deep Learning for
	Voltage Droop Control for MMC-	Intelligent and Connecte	
MTDC Considering Lo		Tianqi Qie	Beijing Inst. of Tech.
Ji Sun	Linyi Univ.	Weida Wang	Beijing Inst. of Tech.
Jianhua Liu Jianlong Qiu	Linyi Univ. Linyi Univ.	Chao Yang Ying Li	Beijing Inst. of Tech. Beijing Inst. of Tech.
Xiangyong Chen	Linyi Univ. Linyi Univ.	Yuhang Zhang	Beijing Inst. of Tech.
•TuB03-7	17:50-18:10	Wenjie Liu	Beijing Inst. of Tech.
		•TuB04-5	17:10-17:30
	tform Improves Distribution System c Vehicles Charging Service		based Intention Inference of Lag
Kesitience and Electric Jian Zhong	Xi'an Jiaotong Univ.		pased Intention Injerence of Lag ng Decision-Making Process
Yuqi Qian	Xi'an Jiaotong Univ.	Guofu Yan	Beijing Inst. of Tech.
Xiaoyang Wang	Xi'an Jiaotong Univ.	Huilong Yu	Beijing Inst. of Tech.
Yuhong Zhao	Xi'an Jiaotong Univ.	Chaopeng Zhang	Beijing Inst. of Tech.
Pengfei Wu	Xi'an Jiaotong Univ.	Junqiang Xi	Beijing Inst. of Tech.
Chen Chen	Xi'an Jiaotong Univ.	•TuB04-6	17:30-17:50
Meng Cai	Xi'an Jiaotong Univ.		ng Style Recognition using CAN
TuB 04	15:50-18:10 Tianmen Hall	Signal based on Factor 1	
		Chaopeng Zhang	Beijing Inst. of Tech.
Connected Vehicles	s and Applications of Intelligent and	Wenshuo Wang	McGill Univ.
	Daille a Luck of Tool	Jian Zhang	China FAW Group Co.,
Chair: Zhiyang Ju	Beijing Inst. of Tech.	Jian Zhang	Ltd.,Changchun
Co-Chair: Jicheng Che TuB04-1	en Beihang Univ. 15:50-16:10	Zhiyang Ju	Beijing Inst. of Tech.
		Zhaokun Chen	Beijing Inst. of Tech.
_	ensus Control of Multiple Rigid-Body	Junqiang Xi	Beijing Inst. of Tech.
Systems with Digraphs		•TuB04-7	17:50-18:10
Zhuo Zhang	Northwestern Polytechnical Univ.		trol of Constrained Connected and
Rongxin Cui Shouxu Zhang	Northwestern Polytechnical Univ.	Automated Vehicles und	
_	Northwestern Polytechnical Univ. Northwestern Polytechnical Univ.	Henglai Wei	Nangyang Technological Univ.
Huiping Li Weisheng Yan	Northwestern Polytechnical Univ.	Yan Wang	Nangyang Technological Univ.
•TuB04-2	16:10-16:30	Jicheng Chen	Beihang Univ.
		Hui Zhang	Beihang Univ.
•	ding Mode Control for Nonlinear ing with Multiplication Measurement	_	5:50-18:10 Xiantao Hall
venicie i iaioon iracki Errors	ing with Muttiplication Measurement	Digital Twin for Industri	
Shihui Yang	Chang'an Univ.	Chair: Zhen Cai	Wuhan City Polytechnic
Zongtao Zhang	Shaanxi Transportation Holding	Co-Chair: Dan Zhang	Zhejiang Univ. of Tech.
Zongtao Zhang	Group Co.,Ltd.	•TuB05-1	15:50-16:10
Lei Zuo	Chang'an Univ.		ory inclination control with weight-
•TuB04-3	16:30-16:50		ectional drilling systems
	edback Secure Platoon Control for	Zhen Cai	Wuhan City Polytechnic Univ.
	tems with Sensor-actuator Attacks	Shigang Wang	Wuhan City Polytechnic Univ.
Connecieu venicie sys Lin He	Heilongjiang Univ.	Gang Hao	Wuhan City Polytechnic Univ.
Xin Wang	Heilongjiang Univ.	•TuB05-2	16:10-16:30
Xin Wang Xin Li	Northeast Forestry Univ.		
	•	_	od and Application Practice on
Xian Zhang	Heilongjiang Univ.	Identifiable Digital Obje	eci

Bin Xie
China Academy of Information &
Communications Tech., Beijing
Juan Tian
China Academy of Information &
Communications Tech., Beijing
Cheng Chi
China Academy of Information &
Communications Tech., Beijing
Yang Liu
China Academy of Information &
Communications Tech., Beijing
TuB05-3

16:30-16:50

Digital Twin Development: Mathematical Modeling

Dennis German Research Center for
Krummacker Artificial Intelligence
Mike Reichardt German Research Center for

Artificial Intelligence

Christoph Fischer German Research Center for

Artificial Intelligence

Hans D. Schotten German Research Center for

Artificial Intelligence

●TuB05-4 16:50-17:10

Semantic Interoperability of Digital Twins: Ontology-based Capability Checking in AAS Modeling Framework

Yining Huang
Paris-Saclay Univ.
Saadia Dhouib
Paris-Saclay Univ.
Luis Palacios Medinacelli
Paris-Saclay Univ.
Jacques Malenfant
Sorbonne Univ.
17:10-17:30

Effective Throughput Optimization of SAG Milling Process based on BPNN and Genetic Algorithm

Zhenhong Liao China Univ. of GeoSci. Ce Xu Changsha Research Inst. of Mining

and Metallurgy CO., Ltd.

Wen Chen Changsha Research Inst. of Mining

and Metallurgy CO., Ltd.

Qifu Chen China Univ. of GeoSci.
Feng Wang China Univ. of GeoSci.
Jinhua She Tokyo Univ. of Tech.

•TuB05-6 17:30-17:50

Design and Development of Big Data System for Blast

Furnace Ironmaking

Qifu Chen
China Univ. of GeoSci.

Jinhua She
Tokyo Univ. of Tech.

Min Wu
China Univ. of GeoSci.

Zhuofu Zhang
China Univ. of GeoSci.

China Univ. of GeoSci.

China Univ. of GeoSci.

17:50-18:10

Integrating Worker Assistance Systems and Enterprise

Resource Planning in Industry 4.0

Marc Fraunhofer Inst. of Optronics, System
Brünninghaus Technologies and Image Exploitation
Magnus Redeker Fraunhofer Inst. of Optronics, System
Technologies & Image Exploitation

Wednesday, May 10, 2023

Keynote 2	9:00-10:00	Yellow Crane Hall	Hongmei Shao	China Univ. of GeoSci.
Keynote 2			Hongliang Hu	COFCO Coca Cola Beverage
Chair: Jundong Wu	Cł	nina Univ. of GeoSci.		(Xinjiang) Co. Ltd.
Cyber-physical system	s: Analysis and	Design	Xingni Liu	China Univ. of GeoSci.
Peng Shi	Univ. o	of Adelaide, Australia	Ling Zhang	China Univ. of GeoSci.
Industry Forum 2	10:30-12:00	Yellow Crane Hall	●WeA01-5	14:50-15:10
Industry Forum 2			Equivalent Input	Disturbance-based Model Predictive
Chair: Yebin Wang	Mitsubishi E	lectric Research Lab.	Control of Shaking	Table System
Chair: Victor Huang		Onlye Solutions	Qi Lei	Central South Univ.
Chair: Michael Condr	y	ClinicAI	Cheng Wang	Central South Univ.
Industry Forum 2		10:30-12:00	●WeA01-6	15:10-15:30
Trends and Advanc	es in Industri	al Automation and	Asset Adminstration	n Shell-based Flexible Manufacturing
Autonomous Vehicles			System	
Pengwei Tian		Alibaba Cloud	Zhi Fan	Fraunhofer Inst. for Manufacturing
Pei Huang		e-works Ltd		Engineering & Automation IPA
Honglin Li		Dongfeng Motors	Dachuan Shi	Fraunhofer Inst. for Manufacturing
WeA 01	13:30-15:30	Qianjiang Hall		Engineering & Automation IPA
Theory and Technolog	gies		Olga Meyer	Fraunhofer Inst. for Manufacturing
Chair: Hongmei Shao	Cł	nina Univ. of GeoSci.		Engineering & Automation IPA
Co-Chair: Shanying Z	hu Shar	ghai Jiao Tong Univ.	Joachim	Fraunhofer Inst. for Manufacturing
●WeA01-1		13:30-13:50	Seidelmann	Engineering & Automation IPA
Real-time Solar Ar	ray Data Acq	uisition and Fault	Hao Wang	Shanghai Jiao Tong Univ.
Detection using Neuro	al Networks		WeA 02	13:30-15:30 Jasmine Hall
Sunil Rao		Arizona State Univ.	*	earning Theories, Methods, and
Deep Pujara		Arizona State Univ.	_	application to Health Management of
Andreas Spanias		Arizona State Univ.	Complex Equipmen	
Cihan Tepedelenlioglu	1	Arizona State Univ.	Chair: Wanke Yu	China Univ. of GeoSci.
Devarajan Srinivasan		Poundra, LLC	Co-Chair: Shumei Z	
●WeA01-2		13:50-14:10	•WeA02-1	13:30-13:50
Emotion Recognition	via Environn	nental Context and		Conitoring of Satellite Momentum Wheel
Human Body			_	Canonical Variable Analysis and Sliding
Chengshan Jiang	Cł	nina Univ. of GeoSci.	Interval Variance	
Zhentao Liu	Cł	nina Univ. of GeoSci.	Sirui Du	Tianjin Univ.
•WeA01-3		14:10-14:30	Shumei Zhang	Tianjin Univ.
Simulation and Prea	liction of Bubb	le Size and Motion	Yang Zhao	Beijing Inst. of Spacecraft
Characteristics of Une	derwater Horizo	ntal Flow	W 402 2	System Engineering
Zhong Yu	V	Wuhan Univ. of Tech.	•WeA02-2	13:50-14:10
Zhiyong Feng	7	Wuhan Univ. of Tech.		Scheduling for Blast Furnace Gas
Xiaohe Deng	7	Wuhan Univ. of Tech.		n Time Series Feature Extraction
Sanbao Hu	7	Wuhan Univ. of Tech.	Huihang Li	China Univ. of GeoSci.
●WeA01-4		14:30-14:50	Jie Hu	China Univ. of GeoSci.
The Influence of In	dustrial Robot	Application on the	Qingfeng Yang	China Univ. of GeoSci.
Employment of the Mo	anufacturing Ind	ustry in China	Luefeng Chen	China Univ. of GeoSci.
			Min Wu	China Univ. of GeoSci.

ICPS2023			Technical Program	
•WeA02-3	14:10-14:30	Yong He	China Univ. of GeoSci.	
-	rning with Reward Shaping and Hybrid	•WeA03-3 14:10-14		
Exploration in Spa	rse Reward Scenes	Robot-Assisted Trajectory Planning Method for NDT		
Yulong Yang	China Univ. of GeoSci.	Pengfei Wang	Anhui Univ.	
Weihua Cao	China Univ. of GeoSci.	Xiang Dong	Anhui Univ.	
Linwei Guo	China Univ. of GeoSci.	Yang Yang	Inst. of Plasma Physics, Chinese	
Chao Gan	China Univ. of GeoSci.		Academy of Sciences	
Min Wu	China Univ. of GeoSci.	Yong Cheng	Inst. of Plasma Physics, Chinese	
●WeA02-4	14:30-14:50		Academy of Sciences	
Tomato Disease De	egree Recognition based on RGB and Lab	●WeA03-4	14:30-14:50	
Color Space Conve	ersion Method	Quasi-synchronization	of Chaotic Systems with Parameters	
Haojie He	Central South Univ. of Forestry & Tech.	Mismatch via Intermitt	tent Sampled-data Control	
Chongyang	Central South Univ. of Forestry & Tech.	Ying Yang	Yunnan Univ.	
Ning		Yali Zhi	Anhui Univ.	
Muou Liu	Central South Univ. of Forestry & Tech.	Zhiming Zhang	Fuyang Normal Univ.	
Junjie Zhu	Central South Univ. of Forestry & Tech.	Qingzhi Wang	Qingdao Univ.	
•WeA02-5	14:50-15:10	•WeA03-5	14:50-15:10	
Adaptive Neural Network Asymptotic Tracking Control for		Mode Estimation and	Event-Triggered Filter of Switched	
Autonomous Surfa		Positive Systems with S		
Yongchao Liu	Qingdao Univ.	Yahao Yang	Hainan Univ.	
Qingzhi Wang	Qingdao Univ.	Junfeng Zhang	Hainan Univ.	
Baozeng Fu	Qingdao Univ.	Shitao Zhang	Hangzhou Dianzi Univ.	
•WeA02-6	15:10-15:30	Huizhou Liu	Hainan Univ.	
	r-follower Consensus of Multi-agent	•WeA03-6	15:10-15:30	
	ero Leader's Control Input		ol for Cyber-Physical Systems with	
Donglin Wang	Linyi Univ.	False Data Injection A		
Yue Wu	Linyi Univ.	Xiuyang Fan	Qingdao Univ.	
Xiangyong Chen	Linyi Univ.	Wenjuan Lin	Qingdao Univ.	
Feng Zhao	Linyi Univ.	WeA 04	13:30-15:30 Tianmen Hall	
WeA 03	13:30-15:30 Lilac Hall			
	on Networked Control Systems: Analysis		tion for Interconnected Systems	
and Synthesis	on Networked Control Systems. Analysis	Chair: Yuchen Jiang	Harbin Inst. of Tech.	
·	Oinedea Univ	Co-Chair: Kuan Li	Shanghai Aerospace Control	
Chair: Wenjuan Li		- W. A O 4 1	Tech. Inst.	
Co-Chair: Xing-Cl	nen China Univ. of GeoSci	•WeA04-1	13:30-13:50	
Shangguan	12 20 12 50		agnosis Approach for Large-Scale	
•WeA03-1	13:30-13:50	· · · · · · · · · · · · · · · · · · ·	s with Communication Link Failures	
	del Predictive Control: From Both	Hao Wang	Harbin Inst. of Tech.	
	ation and Anti-Attack Points of View	Hao Luo	Harbin Inst. of Tech.	
Fan Wei	China Univ. of GeoSci.	Yuchen Jiang	Harbin Inst. of Tech.	
Chaoling Zhang	China Univ. of GeoSci.	Mingyi Huo	Harbin Inst. of Tech.	
Xiongbo Wan	China Univ. of GeoSci.	●WeA04-2	13:50-14:10	
●WeA03-2	13:50-14:10	•	alysis based on the Identification of	
H∞ control agains	st mixed DoS attacks for cyber-physical	Power Grid Communic	cation Channel Quality Detection	
systems		He Han	Wuhan Univ.	

Fengqiu Xu

Xianze Xu

Wuhan Univ.

Wuhan Univ.

China Univ. of GeoSci.

China Univ. of GeoSci.

Huiting Wang

Chuanke Zhang

•WeA04-3	14:10-14:30	Dong Zhao	Anhui Univ.
	Optical Path Switching device in	•WeA05-3	14:10-14:30
Image-spectrum Coordina			Attack in Optimal Power Flow with
Xiangyan Liu	Wuhan Textile Univ.	Phase Shifting Transfo	•
Xiangyang Zhou	Wuhan Textile Univ.		East China Univ. of Sci. & Tech.
		Hongcheng Zhu	
Qiaoling Ji	Wuhan Textile Univ.	Chensheng Liu Min Zhou	East China Univ. of Sci. & Tech.
Feng Wang • WeA04-4	Wuhan Textile Univ.		East China Univ. of Sci. & Tech.
	14:30-14:50	Yang Tang	East China Univ. of Sci. & Tech.
	anent-Magnet Synchronous Motor	Wenli Du	East China Univ. of Sci. & Tech.
Based on Equivalent-Input		•WeA05-4	14:30-14:50
Xiang Yin	North China Univ. of Tech.		foving Target Defense on the Small
Yuntao Shi	North China Univ. of Tech.	Signal Stability in Pow	•
Daqian Liu	North China Univ. of Tech.	Bingdong Wang	Guizhou Univ.
Gang Li	North China Univ. of Tech.	Junjie Song	Guizhou Univ.
•WeA04-5	14:50-15:10	Liang Wan	Guizhou Univ.
	reats Detection based on Deep	Youliang Tian	Guizhou Univ.
Learning Approach		Xin Wang	Qilu Univ. of Tech.
Hope Nkiruka Eke	Robert Gordon Univ.	Zhenyong Zhang	Guizhou Univ.
	National Subsea Centre, Aberdeen	●WeA05-5	14:50-15:10
●WeA04-6	15:10-15:30	Deep Learning-based	Hybrid Detection Model for False
Ensemble Common Feat	tures Technique for Lightweight	Data Injection Attacks	in Smart Grid
Intrusion Detection in Ind	lustrial Control System	Huan Yang	Ningxia Univ.
Uneneibotejit	Robert Gordon Univ.	Ruijia Cao	Ningxia Univ.
Otokwala		Huan Pan	Ningxia Univ.
Andrei Petrovski	Robert Gordon Univ.	Jiayi Jin	Ningxia Univ.
WeA 05	13:30-15:30 Xiantao Hall	●WeA05-6	15:10-15:30
Cybersecurity of the Futu	re DER-based Power Grid	Evaluation and Con	nparison of Three Fuel Optimal
Chair: Zhenyong Zhang	Guizhou Univ.	Impulsive Control S	Strategies for Satellite Formation
Co-Chair: Chensheng Liu	East China Univ. of Sci. &	Reconfiguration	
	Tech.	Lu Bai	Sun Yat-Sen Univ.
•WeA05-1	13:30-13:50	Chengxi Zhang	Jiangnan Univ.
Adaptive Physical Acce	ess Detection against Ambient	Jihe Wang	Sun Yat-Sen Univ.
Temperature Variation		WeB 01	15:50-17:50 Qianjiang Hall
An Zhou	Guangdong Power Grid Co., Ltd.	Applications	
Kexin Jiao	Xi'an Jiaotong Univ.	Chair: Xin Chen	China Univ. of GeoSci.
Famao Mei	Guangdong Power Grid Co., Ltd.	Co-Chair: Danyun Li	China Univ. of GeoSci.
	Guangdong Power Grid Co., Ltd.	●WeB01-1	15:50-16:10
	Guangdong Power Grid Co., Ltd.		Framework using Secure Computing
Yuanyi Bao	Xi'an Jiaotong Univ.	on Untrusted Servers	5 1
Yang Liu	Xi'an Jiaotong Univ.	Jing Jia	Keio Univ.
•WeA05-2	13:50-14:10	Hiroaki Nish	Keio Univ.
	ol for General Linear Systems with	•WeB01-2	16:10-16:30
Arbitrary Convergence Ti			Photovoltaic Power Generation based
Lu Ren	Anhui Univ.	on VMD-EMD-BiLST	
Xiaofeng Li	Anhui Univ.	Shaolong Zheng	China Univ. of GeoSci.
Mengwei Sun	Anhui Univ.	Danyun Li	China Univ. of GeoSci.
Mongwei Sull	Allilui Uliiv.	Danyun Li	Cilila Ciliv. Of Geosci.

Technical Program

ICPS2023

•WeB01-3	16:30-16:50	SGDA: A Saliency-Guided I	Domain Adaptation Network for
A Trajectory Tracking Method using Dynamic Sliding Mode		Nighttime Semantic Segmentation	
Control with Parame	ter Optimization for Autonomous	Yijia Duan	Shanghai Jiao Tong Univ.
Underwater Vehicles		Jingzheng Tu	Shanghai Jiao Tong Univ.
Weiliang Li	China Univ. of GeoSci.	Cailian Chen	Shanghai Jiao Tong Univ.
Xuzhi Lai	China Univ. of GeoSci.	●WeB02-4	16:50-17:10
Sheng Du	China Univ. of GeoSci.	Orientation-based Feature	Aggregation for Multi-Target
Chengda Lu	China Univ. of GeoSci.	Multi-Camera Tracking	
Yawu Wang	China Univ. of GeoSci.	Yansong Gao	Shanghai Jiao Tong Univ.
Zonghuan Chen Gu	angzhou Marine Geological Survey	Jingzheng Tu	Shanghai Jiao Tong Univ.
Min Wu	China Univ. of GeoSci.	Cailian Chen	Shanghai Jiao Tong Univ.
●WeB01-4	16:50-17:10	Qimin Xu	Shanghai Jiao Tong Univ.
An Improved 3D Recor	nstruction Method for Weak Texture	Shanying Zhu	Shanghai Jiao Tong Univ.
Objects Combined with	Calibration and ICP Registration	●WeB02-5	17:10-17:30
Lang Qin	China Univ. of GeoSci.	Data Quality Guarantee M	fechanism Based on Sunk Cost
Xin Chen	China Univ. of GeoSci.	Effect	
Xuan Gong	China Univ. of GeoSci.	Yonghua Xu	Hunan Univ. of Tech.
●WeB01-5	17:10-17:30	Jiaqi Liu	Central South Univ.
Interpretable Analysis	of Feature Importance and Implicit	Yuying Yang	Central South Univ.
Correlation based on S	emg Grayscale Images	●WeB02-6	17:30-17:50
Xiaohu Ao	China Univ. of GeoSci.	Literature Survey on	Manufacturing Shop Floor
Feng Wang	China Univ. of GeoSci.	Performance Measurement	ts: Frameworks, Models, and
Juan Zhao	China Univ. of GeoSci.	Categorizations	
Jinhua She	Tokyo Univ. of Tech.	Abdul Rehan Khan Moham	med Univ. of Warwick
●WeB01-6	17:30-17:50	Jiayi Zhang	Univ. of Warwick
Bayesian Optimized Autoencoder for Predictive		Benjamin Silverstone	Univ. of Warwick
Maintenance of Smart Packaging Machines		Ahmad Bilal	Univ. of Warwick
Murshedul Arifeen	Robert Gordon Univ.	WeB 03 15	:50-17:50 Lilac Hall
Andrei Petrovski	Robert Gordon Univ.	Data Oriented Prognostics	and Health Management for
WeB 02	15:50-17:50 Jasmine Hall	Industrial Systems	
Applications		Chair: Renjie Ma	Univ. of Sci. & Tech. Beijing
Chair: Jiandong Wang	Shandong Univ. of Sci. & Tech.	Co-Chair: Yang Li	Shanghai Univ.
Co-Chair: Shanying Zh	u Shanghai Jiao Tong Univ.	●WeB03-1	15:50-16:10
●WeB02-1	15:50-16:10	Exergy-related Operating P	Performance Assessment for Hot
Photovoltaic Abnorma	l Data Cleaning based on Fuzzy	_	Multiple imputation and Multi-
Clustering-Quartile Alg	gorithm	class Support Vector Data I	
Yidong Li	China Univ. of GeoSci.	Chuanfang Zhang	Univ. of Sci. & Tech. Beijing
Danyun Li	China Univ. of GeoSci.	Kaixiang Peng	Univ. of Sci. & Tech. Beijing
●WeB02-2	16:10-16:30	Jie Dong	Univ. of Sci. & Tech. Beijing
Energy Consumption Rectification to Remove Effects of		Renjie Ma	Univ. of Sci. & Tech. Beijing
Different Outdoor Temperatures in Degree-days		Yangfan Wang	Univ. of Sci. & Tech. Beijing
Shouchen Sun	Shandong Univ. of Sci. and Tech.	Dongjie Hua	Univ. of Sci. & Tech. Beijing
Jiandong Wang	Shandong Univ. of Sci. and Tech.	•WeB03-2	16:10-16:30
Qingdian Sun	Shandong Univ. of Sci. and Tech.		arning-based Compound Fault
Changsheng Zhao	Shandong Univ. of Sci. and Tech.	Diagnosis Methods for Indi	
●WeB02-3	16:30-16:50	Renjie Ma	Univ. of Sci. & Tech. Beijing

Fuzhong Shi	Univ. of Sci. & Tech. Beijing	Kun Ma	National Inst. of Metrology	
Zijing Wu	Univ. of Sci. & Tech. Beijing	●WeB04-2	16:10-16:30	
Kaixiang Peng	Univ. of Sci. & Tech. Beijing	Extended Fast Relev	vance Vector Regression based Pollutant	
●WeB03-3	16:30-16:50	Concentrations Pr	rediction for Biomass Cogeneration	
An Efficient Condition Monitoring and Fault Diagnosis		Systems		
Method for Bear	rings under Multiple Working Conditions	Zhifei Sun	Zhejiang Univ. of Tech.	
Qiong Zeng	Hunan Univ.	Xiuli Wang	Zhejiang Univ. of Tech.	
Qing Zhu	Hunan Univ.	Defeng He	Zhejiang Univ. of Tech.	
Yun Feng	Hunan Univ.	●WeB04-3	16:30-16:50	
Yaonan Wang	Hunan Univ.	Short-term Load Fo	recasting for Holidays based on Similar	
●WeB03-4	16:50-17:10	Days Selecting and XGBoost Model		
Sliding Window	-based Real-time Remaining Useful Life	Anping Huang Dongguan Power Supply Burea		
Prediction for M	filling Tool		Guangdong Power Grid Co., Ltd.	
Chen Tong	Hunan Univ.	Juan Zhou	Dongguan Power Supply Bureau	
Qing Zhu	Hunan Univ.		Guangdong Power Grid Co., Ltd.	
Yun Feng	Hunan Univ.	Tao Cheng	Dongguan Power Supply Bureau	
Yaonan Wang	Hunan Univ.		Guangdong Power Grid Co., Ltd.	
●WeB03-5	17:10-17:30	Xiangzhen He	Power Dispatching Control Center	
A Short-term Wind Power Forecasting Method Based on			Guangdong Power Grid Co., Ltd	
NWP Wind Spee	ed Fluctuation Division and Clustering	Ji Lv	China Univ. of GeoSci.	
Quanhui Li	China Univ. of GeoSci.	Min Ding	China Univ. of GeoSci.	
Ji Lv	China Univ. of GeoSci.	●WeB04-4	16:50-17:10	
Min Ding	China Univ. of GeoSci.	Incipient Fault Diagnosis of IGBT Drive Circuit based of		
Danyun Li	China Univ. of GeoSci.	EWT-ResNet		
Zhijian Fang	China Univ. of GeoSci.	Wu Hao	Tongji Univ.	
●WeB03-6	17:30-17:50	Qiancun Yuan	Tongji Univ.	
Incipient Gradual Fault Detection via Transformed		●WeB04-5	17:10-17:30	
Component and	Component and Dissimilarity Analysis		YOLO V5-MAX: A Multi-object Detection Algorithm in	
Lingxia Mu	Xi'an Univ. of Tech.	Complex Scenes		
Wenzhe Sun	Xi'an Univ. of Tech.	Xingkun Li	Tsinghua Univ.	
Youmin Zhang	Concordia Univ.	Guangyu Tian	Tsinghua Univ.	
Nan Feng	Xi'an Univ. of Tech.	Zhenghong Lu	Tsinghua Univ.	
WeB 04	15:50-17:50 Tianmen Hall	Guojun Zhang	Tsinghua Univ.	
Data Oriented Pr	rognostics and Health Management for	●WeB04-6	17:30-17:50	
Industrial Systems		Vehicle Anomaly Detection by Attention-Enhanced		
Chair: Xiuli Wai	ng Zhejiang Univ. of Tech.	Temporal Convoluti	ional Network	
Co-Chair: Yang	Li Shanghai Univ.	Zhitao He	Zhejiang Univ. of Tech.	
●WeB04-1	15:50-16:10	Yongyi Chen	Zhejiang Univ. of Tech.	
Deep Learning	Traffic Prediction to Optimize Routing	Dan Zhang	Zhejiang Univ. of Tech.	
Paths and Reduce Latency in SDN		Mohammed	King Abdulaziz Univ.	
Rui Xiong China Academy of Launch Vehicle Tech.		Abdulaal		
Qianchen	China Academy of Launch Vehicle Tech.	WeB 05	15:50-17:50 Xiantao Hall	
Yuan		Application of Artif	ficial Intelligence in Iron and Steel	
Hao Zhang	China Academy of Launch Vehicle Tech.	Metallurgy Process		
Xiaoming	China Academy of Launch Vehicle Tech.	Chair: Xinmin Zhar	zhejiang Univ.	
Wang		Co-Chair: Luefeng	Chen China Univ. of GeoSci.	

China Univ. of GeoSci.

17:30-17:50

●WeB05-1 15:50-16:10 Yan Yuan ●WeB05-6 Short-Term Prediction of Coke Pushing Current Peak based on Improved ARIMA Model Analysis of Transient Voltage Problems based on Cluster China Univ. of GeoSci. Haiyang Wei Analysis of Multi-level Transmission Section Limit Luefeng Chen China Univ. of GeoSci. Coupling China Univ. of GeoSci. Jie Hu Haotian Xu China Electric Power Research Inst. China Univ. of GeoSci. Shicong Ma China Electric Power Research Inst. Yi Ren Min Wu China Univ. of GeoSci. Tiezhu Wang China Electric Power Research Inst. Witold Pedrycz Univ. of Alberta Shixiong Fan China Electric Power Research Inst. Kaoru Hirota Tokyo Inst. of Tech. ●WeB05-2 16:10-16:30 Grid Voltage Feedforward Control of GFI for Improving **Dynamical Performance** Zaixun Ling State Grid Hubei Electric Power Research State Grid Hubei Electric Power Research Inst. Li You Bin Zhou State Grid Hubei Electric Power Co., Ltd. State Grid Hubei Electric Power Research Yibo Cui Inst. Zhiqiang Zhou State Grid Hubei Electric Power Co., Ltd. **Dingbang Huang** China Univ. of GeoSci. ●WeB05-3 16:30-16:50 A Decomposition-based Encoder-Decoder Framework for Multi-step Prediction of Burn-Through Point in Sintering Process Yuhan Xie Zhejiang Univ. Bocun He Zhejiang Univ. Xinmin Zhang Zhejiang Univ. Zhihuan Song Zhejiang Univ. ●WeB05-4 16:50-17:10 Prediction of Silicon Content in Molten Iron of Blast Based *Furnace* on Multi-dimensional Sequential Characteristic Reconstruction Zhuofu Zhang China Univ. of GeoSci. Weihua Cao China Univ. of GeoSci. China Univ. of GeoSci. Jie Hu Oifu Chen China Univ. of GeoSci. Min Wu China Univ. of GeoSci. ●WeB05-5 17:10-17:30 Blast Furnace Gas Utilization Rate Prediction Model based on Northern Goshawk Optimization and Long Short-Term Memory in Massive Data Set Yue Zhou China Univ. of GeoSci.

China Univ. of GeoSci.

China Univ. of GeoSci.

Weihua Cao Zhuofu Zhang

Thursday, May 11, 2023

	•	May 11, 2023		
Keynote 3	8:30-9:30 Yellow Crane Hall	Xiao Liang	Anhui Normal Univ.	
Keynote 3		Xinke Liu	Anhui Normal Univ.	
Chair: Jinhua She	Tokyo Univ. of Tech.	Xinyv Rui	Anhui Normal Univ.	
Glocal (Global/Loc	al) Control for Hierarchical Cyber	●ThA01-6		
Physical Systems:	Theoretical Foundation towards	Experimental Design of Lower-limb Movement Recognition		
Practical Application	ns	Based on Support Vector Machine		
Shinji Hara	Tokyo Inst. of Tech.	Wangyang Ge	China Univ. of GeoSci.	
Pos	ster Sessions ThA01	Jinhua She	Tokyo Univ. of Tech.	
May 11, 9:50-10:50		Juan Zhao	China Univ. of GeoSci.	
7	Yellow Crane Hall	Feng Wang	China Univ. of GeoSci.	
●ThA01-1		●ThA01-7		
Stochastic Leader-	Following Consensus of Discrete-	A Robust Design	for Modified Equivalent-Input-	
Time Nonlinear Mu	lti-Agent Systems with Multiplicative	Disturbance Approach		
Noises		Zewen Wang	China Univ. of GeoSci.	
Runhan Zhang	Huazhong Univ. of Sci. & Tech.	Daiki Sato	Tokyo Inst. of Tech.	
Yuanyuan Zhang	Huazhong Univ. of Sci. & Tech.	Jinhua She	Tokyo Univ. of Tech.	
Xiaofeng Zong	China Univ. of GeoSci.	●ThA01-8		
●ThA01-2		sEMG-based Gesture	Recognition by Deep Learning and	
Predictive Speed a	and Current Control for N*3-Phase	Data Enhancement		
PMSM with Param	eter Online Correction	Hao Wu	China Univ. of GeoSci.	
Jing He	Hunan Univ. of Tech.	Feng Wang	China Univ. of GeoSci.	
Runzhong Tang	Hunan Univ. of Tech.	Juan Zhao	China Univ. of GeoSci.	
Changfan Zhang	Hunan Univ. of Tech.	Jinhua She	Tokyo Univ. of Tech.	
Gongping Wu	Changsha Univ. of Sci. & Tech.	●ThA01-9		
Lin Jia	Hunan Univ. of Tech.	Disturbance Rejection	n Using Nonlinear Equivalent-Input-	
Zongyu Li	Hunan Univ. of Tech.	Disturbance Approach	'n	
●ThA01-3		Hantao Wang	China Univ. of GeoSci.	
Output Stability fo	or Wind Power Generation System	Jinhua She	Tokyo Univ. of Tech.	
Based on Equivaler	nt-Input-Disturbance Approach	Feng Wang	China Univ. of GeoSci.	
Shaoran Wang	China Univ. of GeoSci.	Juan Zhao	China Univ. of GeoSci.	
Jinhua She	Tokyo Univ. of Tech.	●ThA01-10		
Feng Wang	China Univ. of GeoSci.	Adaptive Spatial I	Repetitive Control for Position-	
Juan Zhao	China Univ. of GeoSci.	dependent Periodic S	Signals	
●ThA01-4		Dongxu Gao	Hunan Univ. of Sci. & Tech.	
Personnel Management System of Steelmaking Plant		Lan Zhou	Hunan Univ. of Sci. & Tech.	
Based on CPS Syste	e m	Jinhua She	Tokyo Univ. of Tech.	
Zhang Zhen	WISDRI Incorporation Limited	●ThA01-11		
Ma Jianjun	LEADOR Incorporation Limited	Stable Physical Human-Robot Interaction Control for a		
●ThA01-5		Wrist Tremor Suppre		
Adaptive Weight Feature Pyramid for Multi-Scale		Mingyuan Xie	China Univ. of GeoSci.	
Pedestrian Detection in Real-Time		Zhen-Tao Liu	China Univ. of GeoSci.	
Haozheng Qian	Anhui Normal Univ.	Jinhua She	Tokyo Univ. of Tech.	
Mingxing Fang	Anhui Normal Univ.	●ThA01-12		
		High propinion from	wanny magguramant approach of	

Jiangsu Univ. of Tech.

Youwu Du

High-precision frequency measurement approach of

ICPS2023			Technical Program
diminishing multi-sourc	e errors for UAV-based	of High-Speed Trains	
aeromagnetic survey		Wanwan Ren	Central South Univ.
Minkang Wang	China Univ. of GeoSci.	Jun Peng	Central South Univ.
Jian Ge	China Univ. of GeoSci.	Boyu Shu	Central South Univ.
Minggui Wang	Hubei Earthquake Agency	Heng Li	Central South Univ.
•ThA01-13			Central South Univ.
Feedback linearization method for unknown dynamics		Zhiwu Huang	Central South Univ.
based on nonzero-sum games		●ThA01-19	
Yipu Sun	China Univ. of GeoSci.	Improved Sliding Mod	de Control Torsional Vibration
Xin Chen	China Univ. of GeoSci.	Suppression Method for	Permanent Magnet Synchronous
Wenpeng He	China Univ. of GeoSci.	Transmission System of	^F Electric Vehicles
Edwardo F. Fukushima	Tokyo Univ. of Tech.	Ning Jia	Hunan Univ. of Tech.
Jinhua She	Tokyo Univ. of Tech.	Kaihui Zhao	Hunan Univ. of Tech.
•ThA01-14		Yuyin Lv	Hunan Univ. of Tech.
Homothetic Tube-based	Model Predictive Control of	Mengjie Qiao	Hunan Univ. of Tech.
Cyber-physical Systems with Guaranteed Transient		Xin You	Hunan Univ. of Tech.
Performance		Xiangfei Li	Hunan Univ. of Tech.
Kunwu Zhang	Univ. of Victoria	●ThA01-20	
Yang Shi	Univ. of Victoria	Modeling lithium-ion l	Battery in Grid Energy Storage
●ThA01-15		Systems: A Big Data and Artificial Intelligence Approac	
Cooperative braking of	c urban rail vehicles with	Yong Miao	Shanghai Electric Power
Koopman model predictive	e control	Tra	ansmission & Distribution Group
Boyu Shu	Central South Univ.	Xinyuan He	Univ. of Bath
Zhiwu Huang	Central South Univ.	Chenghong Gu	Univ. of Bath
Wanwan Ren	Central South Univ.		
Xiaoyong Zhang	Central South Univ.		
Hui Peng	Central South Univ.		
Jun Peng	Central South Univ.		
●ThA01-16			
State of Charge Estima	tion Based on Hierarchical		
Optimization of Model Pa	rameters for Lithium-ion		
Hongjiang He	Central South Univ.		
Zhiwu Huang	Central South Univ.		
Hui Peng	Central South Univ.		
Heng Li	Central South Univ.		
Jun Peng	Central South Univ.		
●ThA01-17			
An optimized prediction	horizon energy management		
method for electric vehicle	?S		
Zini Wang	Central South Univ.		
Zhiwu Huang	Central South Univ.		
Fu Jiang	Central South Univ.		
Weirong Liu	Central South Univ.		
T . T			

Central South Univ.

Cooperative Control with Adaptive Set Point Adjustment

Jun Peng

●ThA01-18

Welcome to ICPS 2023

